[细胞工厂能量代谢设计研究进展]。

Q4 Biochemistry, Genetics and Molecular Biology
Yiqun Yang, Qingqing Liu, Shuo Tian, Tao Yu
{"title":"[细胞工厂能量代谢设计研究进展]。","authors":"Yiqun Yang, Qingqing Liu, Shuo Tian, Tao Yu","doi":"10.13345/j.cjb.240565","DOIUrl":null,"url":null,"abstract":"<p><p>Energy metabolism regulation plays a pivotal role in metabolic engineering. It mainly achieves the balance of material and energy metabolism or maximizes the utilization of materials and energy by regulating the supply intensity and mode of ATP and reducing electron carriers in cells. On the one hand, the production efficiency can be increased by changing the distribution of material metabolic flow. On the other hand, the thermodynamic parameters of enzyme-catalyzed reactions can be altered to affect the reaction balance, and thus the production costs are reduced. Therefore, energy metabolism regulation is expected to become a favorable tool for the modification of microbial cell factories, thereby increasing the production of target metabolites and reducing production costs. This article introduces the commonly used energy metabolism regulation methods and their effects on cell factories, aiming to provide a reference for the efficient construction of microbial cell factories.</p>","PeriodicalId":21778,"journal":{"name":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","volume":"41 3","pages":"1098-1111"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Research progress in energy metabolism design of cell factories].\",\"authors\":\"Yiqun Yang, Qingqing Liu, Shuo Tian, Tao Yu\",\"doi\":\"10.13345/j.cjb.240565\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Energy metabolism regulation plays a pivotal role in metabolic engineering. It mainly achieves the balance of material and energy metabolism or maximizes the utilization of materials and energy by regulating the supply intensity and mode of ATP and reducing electron carriers in cells. On the one hand, the production efficiency can be increased by changing the distribution of material metabolic flow. On the other hand, the thermodynamic parameters of enzyme-catalyzed reactions can be altered to affect the reaction balance, and thus the production costs are reduced. Therefore, energy metabolism regulation is expected to become a favorable tool for the modification of microbial cell factories, thereby increasing the production of target metabolites and reducing production costs. This article introduces the commonly used energy metabolism regulation methods and their effects on cell factories, aiming to provide a reference for the efficient construction of microbial cell factories.</p>\",\"PeriodicalId\":21778,\"journal\":{\"name\":\"Sheng wu gong cheng xue bao = Chinese journal of biotechnology\",\"volume\":\"41 3\",\"pages\":\"1098-1111\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sheng wu gong cheng xue bao = Chinese journal of biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13345/j.cjb.240565\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13345/j.cjb.240565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

能量代谢调控在代谢工程中起着举足轻重的作用。主要通过调节细胞内ATP的供给强度和方式,减少电子载流子,达到物质和能量代谢的平衡或物质和能量的最大化利用。一方面,可以通过改变物质代谢流的分布来提高生产效率。另一方面,可以改变酶催化反应的热力学参数,从而影响反应的平衡,从而降低生产成本。因此,能量代谢调控有望成为改造微生物细胞工厂的有利工具,从而增加目标代谢物的产量,降低生产成本。本文介绍了常用的能量代谢调节方法及其对细胞工厂的影响,旨在为微生物细胞工厂的高效建设提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
[Research progress in energy metabolism design of cell factories].

Energy metabolism regulation plays a pivotal role in metabolic engineering. It mainly achieves the balance of material and energy metabolism or maximizes the utilization of materials and energy by regulating the supply intensity and mode of ATP and reducing electron carriers in cells. On the one hand, the production efficiency can be increased by changing the distribution of material metabolic flow. On the other hand, the thermodynamic parameters of enzyme-catalyzed reactions can be altered to affect the reaction balance, and thus the production costs are reduced. Therefore, energy metabolism regulation is expected to become a favorable tool for the modification of microbial cell factories, thereby increasing the production of target metabolites and reducing production costs. This article introduces the commonly used energy metabolism regulation methods and their effects on cell factories, aiming to provide a reference for the efficient construction of microbial cell factories.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sheng wu gong cheng xue bao = Chinese journal of biotechnology
Sheng wu gong cheng xue bao = Chinese journal of biotechnology Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
1.50
自引率
0.00%
发文量
298
期刊介绍: Chinese Journal of Biotechnology (Chinese edition) , sponsored by the Institute of Microbiology, Chinese Academy of Sciences and the Chinese Society for Microbiology, is a peer-reviewed international journal. The journal is cited by many scientific databases , such as Chemical Abstract (CA), Biology Abstract (BA), MEDLINE, Russian Digest , Chinese Scientific Citation Index (CSCI), Chinese Journal Citation Report (CJCR), and Chinese Academic Journal (CD version). The Journal publishes new discoveries, techniques and developments in genetic engineering, cell engineering, enzyme engineering, biochemical engineering, tissue engineering, bioinformatics, biochips and other fields of biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信