脱垂修复用齿轮螺纹的机械生物相容性评价。

IF 1.7 4区 医学 Q3 ENGINEERING, BIOMEDICAL
N M Ferreira, M E T Silva, M P L Parente, F Pinheiro, T Mascarenhas, A A Fernandes
{"title":"脱垂修复用齿轮螺纹的机械生物相容性评价。","authors":"N M Ferreira, M E T Silva, M P L Parente, F Pinheiro, T Mascarenhas, A A Fernandes","doi":"10.1177/09544119251321130","DOIUrl":null,"url":null,"abstract":"<p><p>Pelvic floor disorders (PFD), including Pelvic Organ Prolapse (POP), can negatively impact a woman's daily activities and quality of life. POP is a growing concern, with an increasing number of cases each year and significant numbers of women going through surgery to alleviate it. Traditional interventions like the use of mesh implants have certain limitations such as repeated surgeries. An alternative surgical intervention technique using injectable biodegradable cog threads was suggested. The application of Finite element analysis (FEA) to this research allows us to personalize and select suitable POP correction techniques and study the effect of alternative reinforcement techniques. The 3D computational model of the vagina will be used to simulate defect repair using cog threads. To accurately model this, we conducted uniaxial tensile tests on both the polycaprolactone (PCL) cog threads and the sow's vaginal tissues, which mimic human tissue, providing vital data for precise finite element modeling. The study's findings suggest that cog threads may have the potential to provide benefits in the treatment of POP. This study provides a starting point for further research on cog threads as one possible treatment option for POP.</p>","PeriodicalId":20666,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","volume":"239 2","pages":"155-164"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of mechanical biocompatibility of cog threads for prolapse repair.\",\"authors\":\"N M Ferreira, M E T Silva, M P L Parente, F Pinheiro, T Mascarenhas, A A Fernandes\",\"doi\":\"10.1177/09544119251321130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pelvic floor disorders (PFD), including Pelvic Organ Prolapse (POP), can negatively impact a woman's daily activities and quality of life. POP is a growing concern, with an increasing number of cases each year and significant numbers of women going through surgery to alleviate it. Traditional interventions like the use of mesh implants have certain limitations such as repeated surgeries. An alternative surgical intervention technique using injectable biodegradable cog threads was suggested. The application of Finite element analysis (FEA) to this research allows us to personalize and select suitable POP correction techniques and study the effect of alternative reinforcement techniques. The 3D computational model of the vagina will be used to simulate defect repair using cog threads. To accurately model this, we conducted uniaxial tensile tests on both the polycaprolactone (PCL) cog threads and the sow's vaginal tissues, which mimic human tissue, providing vital data for precise finite element modeling. The study's findings suggest that cog threads may have the potential to provide benefits in the treatment of POP. This study provides a starting point for further research on cog threads as one possible treatment option for POP.</p>\",\"PeriodicalId\":20666,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine\",\"volume\":\"239 2\",\"pages\":\"155-164\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544119251321130\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544119251321130","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

盆底疾病(PFD),包括盆腔器官脱垂(POP),会对女性的日常活动和生活质量产生负面影响。POP是一个日益令人关注的问题,每年的病例数量不断增加,大量妇女通过手术来缓解它。传统的干预措施,如使用网状植入物,有一定的局限性,如重复手术。提出了一种可注射的可生物降解螺纹手术介入技术。有限元分析(FEA)在本研究中的应用使我们能够个性化和选择合适的POP校正技术,并研究替代加固技术的效果。阴道的三维计算模型将被用来模拟使用齿形螺纹的缺陷修复。为了准确地模拟这一点,我们对聚己内酯(PCL)齿线和母猪的阴道组织进行了单轴拉伸试验,模拟人体组织,为精确的有限元建模提供了重要数据。研究结果表明齿形螺纹可能对治疗POP有潜在的好处。本研究为进一步研究齿形螺纹作为一种可能的治疗选择提供了起点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of mechanical biocompatibility of cog threads for prolapse repair.

Pelvic floor disorders (PFD), including Pelvic Organ Prolapse (POP), can negatively impact a woman's daily activities and quality of life. POP is a growing concern, with an increasing number of cases each year and significant numbers of women going through surgery to alleviate it. Traditional interventions like the use of mesh implants have certain limitations such as repeated surgeries. An alternative surgical intervention technique using injectable biodegradable cog threads was suggested. The application of Finite element analysis (FEA) to this research allows us to personalize and select suitable POP correction techniques and study the effect of alternative reinforcement techniques. The 3D computational model of the vagina will be used to simulate defect repair using cog threads. To accurately model this, we conducted uniaxial tensile tests on both the polycaprolactone (PCL) cog threads and the sow's vaginal tissues, which mimic human tissue, providing vital data for precise finite element modeling. The study's findings suggest that cog threads may have the potential to provide benefits in the treatment of POP. This study provides a starting point for further research on cog threads as one possible treatment option for POP.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
5.60%
发文量
122
审稿时长
6 months
期刊介绍: The Journal of Engineering in Medicine is an interdisciplinary journal encompassing all aspects of engineering in medicine. The Journal is a vital tool for maintaining an understanding of the newest techniques and research in medical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信