{"title":"用于高效解决多维非线性工程问题的 TLBO 驱动混合灰狼优化器。","authors":"Harleenpal Singh, Sobhit Saxena, Himanshu Sharma, Vikram Kumar Kamboj, Krishan Arora, Gyanendra Prasad Joshi, Woong Cho","doi":"10.1038/s41598-025-89458-3","DOIUrl":null,"url":null,"abstract":"<p><p>This research article introduces a hybrid optimization algorithm, referred to as Grey Wolf Optimizer-Teaching Learning Based Optimization (GWO-TLBO), which extends the Grey Wolf Optimizer (GWO) by integrating it with Teaching-Learning-Based Optimization (TLBO). The benefit of GWO is that it explores potential solutions in a way similar to how grey wolves hunt, but the challenge with this approach comes during fine-tuning, where the algorithm settles too early on suboptimal results. This weakness can be compensated by integrating TLBO method into the algorithm to improve its search power of solutions as in teaches students how to learn and teachers are knowledge felicitator. GWO-TLBO algorithm was applied for several benchmark optimization problems to evaluate its effectiveness in simple to complex scenarios. It is also faster, more accurate and reliable when compare to other existing optimization algorithms. This novel approach achieves a balance between exploration and exploitation, demonstrating adaptability in identifying new solutions but also quickly zoom in on (near) global optima: this renders it a reliable choice for challenging optimization problems according to the analysis and results.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"11205"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11962168/pdf/","citationCount":"0","resultStr":"{\"title\":\"An integrative TLBO-driven hybrid grey wolf optimizer for the efficient resolution of multi-dimensional, nonlinear engineering problems.\",\"authors\":\"Harleenpal Singh, Sobhit Saxena, Himanshu Sharma, Vikram Kumar Kamboj, Krishan Arora, Gyanendra Prasad Joshi, Woong Cho\",\"doi\":\"10.1038/s41598-025-89458-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This research article introduces a hybrid optimization algorithm, referred to as Grey Wolf Optimizer-Teaching Learning Based Optimization (GWO-TLBO), which extends the Grey Wolf Optimizer (GWO) by integrating it with Teaching-Learning-Based Optimization (TLBO). The benefit of GWO is that it explores potential solutions in a way similar to how grey wolves hunt, but the challenge with this approach comes during fine-tuning, where the algorithm settles too early on suboptimal results. This weakness can be compensated by integrating TLBO method into the algorithm to improve its search power of solutions as in teaches students how to learn and teachers are knowledge felicitator. GWO-TLBO algorithm was applied for several benchmark optimization problems to evaluate its effectiveness in simple to complex scenarios. It is also faster, more accurate and reliable when compare to other existing optimization algorithms. This novel approach achieves a balance between exploration and exploitation, demonstrating adaptability in identifying new solutions but also quickly zoom in on (near) global optima: this renders it a reliable choice for challenging optimization problems according to the analysis and results.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"11205\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11962168/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-89458-3\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-89458-3","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
An integrative TLBO-driven hybrid grey wolf optimizer for the efficient resolution of multi-dimensional, nonlinear engineering problems.
This research article introduces a hybrid optimization algorithm, referred to as Grey Wolf Optimizer-Teaching Learning Based Optimization (GWO-TLBO), which extends the Grey Wolf Optimizer (GWO) by integrating it with Teaching-Learning-Based Optimization (TLBO). The benefit of GWO is that it explores potential solutions in a way similar to how grey wolves hunt, but the challenge with this approach comes during fine-tuning, where the algorithm settles too early on suboptimal results. This weakness can be compensated by integrating TLBO method into the algorithm to improve its search power of solutions as in teaches students how to learn and teachers are knowledge felicitator. GWO-TLBO algorithm was applied for several benchmark optimization problems to evaluate its effectiveness in simple to complex scenarios. It is also faster, more accurate and reliable when compare to other existing optimization algorithms. This novel approach achieves a balance between exploration and exploitation, demonstrating adaptability in identifying new solutions but also quickly zoom in on (near) global optima: this renders it a reliable choice for challenging optimization problems according to the analysis and results.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.