Silvia De Rose, Fabiano Sillo, Andrea Ghirardo, Jörg-Peter Schnitzler, Raffaella Balestrini, Silvia Perotto
{"title":"菌根真菌Tulasnella sp. SV6对兰花寄主Serapias vomeracea共生前反应的组学研究。","authors":"Silvia De Rose, Fabiano Sillo, Andrea Ghirardo, Jörg-Peter Schnitzler, Raffaella Balestrini, Silvia Perotto","doi":"10.1007/s00572-025-01188-6","DOIUrl":null,"url":null,"abstract":"<p><p>Like other plant-microbe symbioses, the establishment of orchid mycorrhiza (ORM) is likely to require specific communication and metabolic adjustments between the two partners. However, while modulation of plant and fungal metabolism has been investigated in fully established mycorrhizal tissues, the molecular changes occurring during the pre-symbiotic stages of the interaction remain largely unexplored in ORM. In this study, we investigated the pre-symbiotic responses of the ORM fungus Tulasnella sp. SV6 to plantlets of the orchid host Serapias vomeracea in a dual in vitro cultivation system. The fungal mycelium was harvested prior to physical contact with the orchid roots and the fungal transcriptome and metabolome were analyzed using RNA-seq and untargeted metabolomics approaches. The results revealed distinct transcriptomic and metabolomic remodelling of the ORM fungus in the presence of orchid plantlets, as compared to the free-living condition. The ORM fungus responds to the presence of the host plant with a significant up-regulation of genes associated with protein synthesis, amino acid and lipid biosynthesis, indicating increased metabolic activity. Metabolomic analysis supported the RNA-seq data, showing increased levels of amino acids and phospholipids, suggesting a remodelling of cell structure and signalling during the pre-symbiotic interaction. In addition, we identified an increase of transcripts of a small secreted protein that may play a role in early symbiotic signalling. Taken together, our results suggest that Tulasnella sp. SV6 may perceive information from orchid roots, leading to a readjustment of its transcriptomic and metabolomic profiles.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":"35 2","pages":"26"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11965168/pdf/","citationCount":"0","resultStr":"{\"title\":\"Omics approaches to investigate pre-symbiotic responses of the mycorrhizal fungus Tulasnella sp. SV6 to the orchid host Serapias vomeracea.\",\"authors\":\"Silvia De Rose, Fabiano Sillo, Andrea Ghirardo, Jörg-Peter Schnitzler, Raffaella Balestrini, Silvia Perotto\",\"doi\":\"10.1007/s00572-025-01188-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Like other plant-microbe symbioses, the establishment of orchid mycorrhiza (ORM) is likely to require specific communication and metabolic adjustments between the two partners. However, while modulation of plant and fungal metabolism has been investigated in fully established mycorrhizal tissues, the molecular changes occurring during the pre-symbiotic stages of the interaction remain largely unexplored in ORM. In this study, we investigated the pre-symbiotic responses of the ORM fungus Tulasnella sp. SV6 to plantlets of the orchid host Serapias vomeracea in a dual in vitro cultivation system. The fungal mycelium was harvested prior to physical contact with the orchid roots and the fungal transcriptome and metabolome were analyzed using RNA-seq and untargeted metabolomics approaches. The results revealed distinct transcriptomic and metabolomic remodelling of the ORM fungus in the presence of orchid plantlets, as compared to the free-living condition. The ORM fungus responds to the presence of the host plant with a significant up-regulation of genes associated with protein synthesis, amino acid and lipid biosynthesis, indicating increased metabolic activity. Metabolomic analysis supported the RNA-seq data, showing increased levels of amino acids and phospholipids, suggesting a remodelling of cell structure and signalling during the pre-symbiotic interaction. In addition, we identified an increase of transcripts of a small secreted protein that may play a role in early symbiotic signalling. Taken together, our results suggest that Tulasnella sp. SV6 may perceive information from orchid roots, leading to a readjustment of its transcriptomic and metabolomic profiles.</p>\",\"PeriodicalId\":18965,\"journal\":{\"name\":\"Mycorrhiza\",\"volume\":\"35 2\",\"pages\":\"26\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11965168/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mycorrhiza\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00572-025-01188-6\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MYCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mycorrhiza","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00572-025-01188-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MYCOLOGY","Score":null,"Total":0}
Omics approaches to investigate pre-symbiotic responses of the mycorrhizal fungus Tulasnella sp. SV6 to the orchid host Serapias vomeracea.
Like other plant-microbe symbioses, the establishment of orchid mycorrhiza (ORM) is likely to require specific communication and metabolic adjustments between the two partners. However, while modulation of plant and fungal metabolism has been investigated in fully established mycorrhizal tissues, the molecular changes occurring during the pre-symbiotic stages of the interaction remain largely unexplored in ORM. In this study, we investigated the pre-symbiotic responses of the ORM fungus Tulasnella sp. SV6 to plantlets of the orchid host Serapias vomeracea in a dual in vitro cultivation system. The fungal mycelium was harvested prior to physical contact with the orchid roots and the fungal transcriptome and metabolome were analyzed using RNA-seq and untargeted metabolomics approaches. The results revealed distinct transcriptomic and metabolomic remodelling of the ORM fungus in the presence of orchid plantlets, as compared to the free-living condition. The ORM fungus responds to the presence of the host plant with a significant up-regulation of genes associated with protein synthesis, amino acid and lipid biosynthesis, indicating increased metabolic activity. Metabolomic analysis supported the RNA-seq data, showing increased levels of amino acids and phospholipids, suggesting a remodelling of cell structure and signalling during the pre-symbiotic interaction. In addition, we identified an increase of transcripts of a small secreted protein that may play a role in early symbiotic signalling. Taken together, our results suggest that Tulasnella sp. SV6 may perceive information from orchid roots, leading to a readjustment of its transcriptomic and metabolomic profiles.
期刊介绍:
Mycorrhiza is an international journal devoted to research into mycorrhizas - the widest symbioses in nature, involving plants and a range of soil fungi world-wide. The scope of Mycorrhiza covers all aspects of research into mycorrhizas, including molecular biology of the plants and fungi, fungal systematics, development and structure of mycorrhizas, and effects on plant physiology, productivity, reproduction and disease resistance. The scope also includes interactions between mycorrhizal fungi and other soil organisms and effects of mycorrhizas on plant biodiversity and ecosystem structure.
Mycorrhiza contains original papers, short notes and review articles, along with commentaries and news items. It forms a platform for new concepts and discussions, and is a basis for a truly international forum of mycorrhizologists from all over the world.