基于ska (ska)的局部图构造的无引用变量调用。

IF 11 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Romain Derelle, Kieran Madon, Joel Hellewell, Víctor Rodríguez-Bouza, Nimalan Arinaminpathy, Ajit Lalvani, Nicholas J Croucher, Simon R Harris, John A Lees, Leonid Chindelevitch
{"title":"基于ska (ska)的局部图构造的无引用变量调用。","authors":"Romain Derelle, Kieran Madon, Joel Hellewell, Víctor Rodríguez-Bouza, Nimalan Arinaminpathy, Ajit Lalvani, Nicholas J Croucher, Simon R Harris, John A Lees, Leonid Chindelevitch","doi":"10.1093/molbev/msaf077","DOIUrl":null,"url":null,"abstract":"<p><p>The study of genomic variants is increasingly important for public health surveillance of pathogens. Traditional variant-calling methods from whole-genome sequencing data rely on reference-based alignment, which can introduce biases and require significant computational resources. Alignment- and reference-free approaches offer an alternative by leveraging k-mer-based methods, but existing implementations often suffer from sensitivity limitations, particularly in high mutation density genomic regions. Here, we present ska lo, a graph-based algorithm that aims to identify within-strain variants in pathogen whole-genome sequencing data by traversing a colored De Bruijn graph and building variant groups (i.e. sets of variant combinations). Through in silico benchmarking and real-world dataset analyses, we demonstrate that ska lo achieves high sensitivity in single-nucleotide polymorphism (SNP) calls while also enabling the detection of insertions and deletions, as well as SNP positioning on a reference genome for recombination analyses. These findings highlight ska lo as a simple, fast, and effective tool for pathogen genomic epidemiology, extending the range of reference-free variant-calling approaches. ska lo is freely available as part of the SKA program (https://github.com/bacpop/ska.rust).</p>","PeriodicalId":18730,"journal":{"name":"Molecular biology and evolution","volume":" ","pages":""},"PeriodicalIF":11.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11986325/pdf/","citationCount":"0","resultStr":"{\"title\":\"Reference-Free Variant Calling with Local Graph Construction with ska lo (SKA).\",\"authors\":\"Romain Derelle, Kieran Madon, Joel Hellewell, Víctor Rodríguez-Bouza, Nimalan Arinaminpathy, Ajit Lalvani, Nicholas J Croucher, Simon R Harris, John A Lees, Leonid Chindelevitch\",\"doi\":\"10.1093/molbev/msaf077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The study of genomic variants is increasingly important for public health surveillance of pathogens. Traditional variant-calling methods from whole-genome sequencing data rely on reference-based alignment, which can introduce biases and require significant computational resources. Alignment- and reference-free approaches offer an alternative by leveraging k-mer-based methods, but existing implementations often suffer from sensitivity limitations, particularly in high mutation density genomic regions. Here, we present ska lo, a graph-based algorithm that aims to identify within-strain variants in pathogen whole-genome sequencing data by traversing a colored De Bruijn graph and building variant groups (i.e. sets of variant combinations). Through in silico benchmarking and real-world dataset analyses, we demonstrate that ska lo achieves high sensitivity in single-nucleotide polymorphism (SNP) calls while also enabling the detection of insertions and deletions, as well as SNP positioning on a reference genome for recombination analyses. These findings highlight ska lo as a simple, fast, and effective tool for pathogen genomic epidemiology, extending the range of reference-free variant-calling approaches. ska lo is freely available as part of the SKA program (https://github.com/bacpop/ska.rust).</p>\",\"PeriodicalId\":18730,\"journal\":{\"name\":\"Molecular biology and evolution\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11986325/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular biology and evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/molbev/msaf077\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular biology and evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/molbev/msaf077","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

基因组变异的研究对病原体的公共卫生监测越来越重要。基于全基因组测序数据的传统变异调用方法依赖于基于参考的比对,这可能会引入偏差,并且需要大量的计算资源。无比对和无参考的方法通过利用基于k-mer的方法提供了另一种选择,但现有的实现通常受到灵敏度限制,特别是在高突变密度的基因组区域。在这里,我们提出了ska lo,一种基于图的算法,旨在通过遍历彩色De Bruijn图和构建变体组(即变体组合集)来识别病原体全基因组测序数据中的菌株内变体。通过芯片基准测试和真实数据集分析,我们证明ska lo在SNP调用中实现了高灵敏度,同时还能够检测插入和缺失,以及在参考基因组上定位SNP以进行重组分析。这些发现突出了ska - lo作为一种简单、快速和有效的病原体基因组流行病学工具,扩展了无参考变异调用方法的范围。ska lo是ska项目的一部分,可以免费获得(https://github.com/bacpop/ska.rust)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reference-Free Variant Calling with Local Graph Construction with ska lo (SKA).

The study of genomic variants is increasingly important for public health surveillance of pathogens. Traditional variant-calling methods from whole-genome sequencing data rely on reference-based alignment, which can introduce biases and require significant computational resources. Alignment- and reference-free approaches offer an alternative by leveraging k-mer-based methods, but existing implementations often suffer from sensitivity limitations, particularly in high mutation density genomic regions. Here, we present ska lo, a graph-based algorithm that aims to identify within-strain variants in pathogen whole-genome sequencing data by traversing a colored De Bruijn graph and building variant groups (i.e. sets of variant combinations). Through in silico benchmarking and real-world dataset analyses, we demonstrate that ska lo achieves high sensitivity in single-nucleotide polymorphism (SNP) calls while also enabling the detection of insertions and deletions, as well as SNP positioning on a reference genome for recombination analyses. These findings highlight ska lo as a simple, fast, and effective tool for pathogen genomic epidemiology, extending the range of reference-free variant-calling approaches. ska lo is freely available as part of the SKA program (https://github.com/bacpop/ska.rust).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular biology and evolution
Molecular biology and evolution 生物-进化生物学
CiteScore
19.70
自引率
3.70%
发文量
257
审稿时长
1 months
期刊介绍: Molecular Biology and Evolution Journal Overview: Publishes research at the interface of molecular (including genomics) and evolutionary biology Considers manuscripts containing patterns, processes, and predictions at all levels of organization: population, taxonomic, functional, and phenotypic Interested in fundamental discoveries, new and improved methods, resources, technologies, and theories advancing evolutionary research Publishes balanced reviews of recent developments in genome evolution and forward-looking perspectives suggesting future directions in molecular evolution applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信