{"title":"外源色氨酸通过促进褪黑素生物合成增强大豆幼苗抗寒性。","authors":"Chunyuan Ren, Tong Cheng, Jingrui Jia, Liang Cao, Wenjie Zhang, Shaoze Zhang, Wanting Li, Yuxian Zhang, Gaobo Yu","doi":"10.1111/ppl.70189","DOIUrl":null,"url":null,"abstract":"<p><p>Given the global climate change, soybean production is highly susceptible to low temperature. Although tryptophan, the synthesis precursors of melatonin and auxin, exhibited a positive effect in regulating plant growth, it is still unclear whether tryptophan could improve the tolerance of soybean to low temperature stress through endogenous melatonin synthesis. Therefore, the effect of tryptophan on the resistance of two varieties of soybean seedlings to low temperature (4°C) was evaluated, and the main regulation pathway of tryptophan was verified with melatonin synthesis inhibitors. The results revealed that low temperature stress significantly inhibited the growth of soybean, while the application of exogenous tryptophan significantly enhanced the antioxidant activity of soybean seedlings to reduce the content of reactive oxygen species, including O<sub>2</sub> <sup>-</sup> (11.3%) and H<sub>2</sub>O<sub>2</sub> (17.8%), and effectively protected the photosynthetic capacity of leaves, involving net photosynthetic rate (22.94%), transpiration rate (15.31%), stomatal conductance (20.27%). And the application of tryptophan significantly increased the leaf area (16.63%), plant height (7.14%), root surface area (24.37%), root volume (22.92%) and root tip number (29.67%) of seedlings at low temperature. However, p-chlorophenylalanine inhibited the synthesis of melatonin and eliminated the effect of tryptophan. In conclusion, tryptophan mainly improved the cold tolerance of soybean seedlings by promoting endogenous melatonin synthesis, which provided a theoretical basis for tryptophan to enhance the cold tolerance of soybean in field production.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 2","pages":"e70189"},"PeriodicalIF":5.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exogenous tryptophan enhances cold resistance of soybean seedlings by promoting melatonin biosynthesis.\",\"authors\":\"Chunyuan Ren, Tong Cheng, Jingrui Jia, Liang Cao, Wenjie Zhang, Shaoze Zhang, Wanting Li, Yuxian Zhang, Gaobo Yu\",\"doi\":\"10.1111/ppl.70189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Given the global climate change, soybean production is highly susceptible to low temperature. Although tryptophan, the synthesis precursors of melatonin and auxin, exhibited a positive effect in regulating plant growth, it is still unclear whether tryptophan could improve the tolerance of soybean to low temperature stress through endogenous melatonin synthesis. Therefore, the effect of tryptophan on the resistance of two varieties of soybean seedlings to low temperature (4°C) was evaluated, and the main regulation pathway of tryptophan was verified with melatonin synthesis inhibitors. The results revealed that low temperature stress significantly inhibited the growth of soybean, while the application of exogenous tryptophan significantly enhanced the antioxidant activity of soybean seedlings to reduce the content of reactive oxygen species, including O<sub>2</sub> <sup>-</sup> (11.3%) and H<sub>2</sub>O<sub>2</sub> (17.8%), and effectively protected the photosynthetic capacity of leaves, involving net photosynthetic rate (22.94%), transpiration rate (15.31%), stomatal conductance (20.27%). And the application of tryptophan significantly increased the leaf area (16.63%), plant height (7.14%), root surface area (24.37%), root volume (22.92%) and root tip number (29.67%) of seedlings at low temperature. However, p-chlorophenylalanine inhibited the synthesis of melatonin and eliminated the effect of tryptophan. In conclusion, tryptophan mainly improved the cold tolerance of soybean seedlings by promoting endogenous melatonin synthesis, which provided a theoretical basis for tryptophan to enhance the cold tolerance of soybean in field production.</p>\",\"PeriodicalId\":20164,\"journal\":{\"name\":\"Physiologia plantarum\",\"volume\":\"177 2\",\"pages\":\"e70189\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiologia plantarum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/ppl.70189\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70189","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Exogenous tryptophan enhances cold resistance of soybean seedlings by promoting melatonin biosynthesis.
Given the global climate change, soybean production is highly susceptible to low temperature. Although tryptophan, the synthesis precursors of melatonin and auxin, exhibited a positive effect in regulating plant growth, it is still unclear whether tryptophan could improve the tolerance of soybean to low temperature stress through endogenous melatonin synthesis. Therefore, the effect of tryptophan on the resistance of two varieties of soybean seedlings to low temperature (4°C) was evaluated, and the main regulation pathway of tryptophan was verified with melatonin synthesis inhibitors. The results revealed that low temperature stress significantly inhibited the growth of soybean, while the application of exogenous tryptophan significantly enhanced the antioxidant activity of soybean seedlings to reduce the content of reactive oxygen species, including O2- (11.3%) and H2O2 (17.8%), and effectively protected the photosynthetic capacity of leaves, involving net photosynthetic rate (22.94%), transpiration rate (15.31%), stomatal conductance (20.27%). And the application of tryptophan significantly increased the leaf area (16.63%), plant height (7.14%), root surface area (24.37%), root volume (22.92%) and root tip number (29.67%) of seedlings at low temperature. However, p-chlorophenylalanine inhibited the synthesis of melatonin and eliminated the effect of tryptophan. In conclusion, tryptophan mainly improved the cold tolerance of soybean seedlings by promoting endogenous melatonin synthesis, which provided a theoretical basis for tryptophan to enhance the cold tolerance of soybean in field production.
期刊介绍:
Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.