光学相干断层扫描无标记检测和表征耐甲氧西林金黄色葡萄球菌生物膜。

IF 2.9 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Natalia Demidova, Jason R Gunn, Ida Leah Gitajn, Ilya Alex Vitkin, Jonathan Thomas Elliott, Valentin V Demidov
{"title":"光学相干断层扫描无标记检测和表征耐甲氧西林金黄色葡萄球菌生物膜。","authors":"Natalia Demidova, Jason R Gunn, Ida Leah Gitajn, Ilya Alex Vitkin, Jonathan Thomas Elliott, Valentin V Demidov","doi":"10.1117/1.JBO.30.4.046003","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>Orthopedic implant-associated infections cause serious complications primarily attributed to bacterial biofilm formation and are often characterized by increased antibiotic resistance and diminished treatment response. Yet, no methods currently exist to identify biofilms intraoperatively-surgeons rely solely on their eyes and hands and cannot detect or differentiate infected tissue to determine the location and extent of contamination.</p><p><strong>Aim: </strong>As the first step in addressing this unmet clinical need, here, we develop an optical coherence tomography (OCT)-based imaging method capable of detection <i>in situ</i> and quantification of one of the most dangerous orthopedic biofilms formed by methicillin-resistant <i>Staphylococcus aureus</i> (MRSA).</p><p><strong>Approach: </strong>Growing biofilms on orthopedic hardware, we identify MRSA distinct optical signature through histogram-based multi-parametric texture analysis of OCT images and support the findings with bioluminescence imaging and scanning electron microscopy. Under identical experimental conditions, we identify an optical signature of <i>Escherichia coli</i> (<i>E. coli</i>) biofilms and use it to distinguish and quantify both species within MRSA-<i>E. coli</i> biofilms.</p><p><strong>Results: </strong>The developed OCT-based methodology was successfully tested for (1) MRSA colonies delineation, (2) detection of metal hardware (an important feature for clinical translation where the metal surface of most orthopedic hardware is not flat), (3) automated quantification of biofilm thickness and roughness, and (4) identification of pores and, therefore, ability to evaluate the role of porosity-one of the critical biological metrics in relation to biofilm maturity and response to treatment. For the first time, we demonstrated complex pore structures of thick ( <math><mrow><mo>></mo> <mn>100</mn> <mrow><mtext>  </mtext></mrow> <mrow><mtext>microns</mtext></mrow> </mrow> </math> ) MRSA biofilms <i>in situ</i> with an unprecedented level of detail.</p><p><strong>Conclusions: </strong>The proposed rapid noninvasive detection/quantification of MRSA biofilms on metal surfaces and delineation of their complex network of pores opens new venues for label-free MRSA detection in preclinical models of trauma surgery, expansion to other bacterial strains, and further clinical translation.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"30 4","pages":"046003"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11960790/pdf/","citationCount":"0","resultStr":"{\"title\":\"Optical coherence tomography for label-free detection and characterization of methicillin-resistant <i>S. aureus</i> biofilms.\",\"authors\":\"Natalia Demidova, Jason R Gunn, Ida Leah Gitajn, Ilya Alex Vitkin, Jonathan Thomas Elliott, Valentin V Demidov\",\"doi\":\"10.1117/1.JBO.30.4.046003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Significance: </strong>Orthopedic implant-associated infections cause serious complications primarily attributed to bacterial biofilm formation and are often characterized by increased antibiotic resistance and diminished treatment response. Yet, no methods currently exist to identify biofilms intraoperatively-surgeons rely solely on their eyes and hands and cannot detect or differentiate infected tissue to determine the location and extent of contamination.</p><p><strong>Aim: </strong>As the first step in addressing this unmet clinical need, here, we develop an optical coherence tomography (OCT)-based imaging method capable of detection <i>in situ</i> and quantification of one of the most dangerous orthopedic biofilms formed by methicillin-resistant <i>Staphylococcus aureus</i> (MRSA).</p><p><strong>Approach: </strong>Growing biofilms on orthopedic hardware, we identify MRSA distinct optical signature through histogram-based multi-parametric texture analysis of OCT images and support the findings with bioluminescence imaging and scanning electron microscopy. Under identical experimental conditions, we identify an optical signature of <i>Escherichia coli</i> (<i>E. coli</i>) biofilms and use it to distinguish and quantify both species within MRSA-<i>E. coli</i> biofilms.</p><p><strong>Results: </strong>The developed OCT-based methodology was successfully tested for (1) MRSA colonies delineation, (2) detection of metal hardware (an important feature for clinical translation where the metal surface of most orthopedic hardware is not flat), (3) automated quantification of biofilm thickness and roughness, and (4) identification of pores and, therefore, ability to evaluate the role of porosity-one of the critical biological metrics in relation to biofilm maturity and response to treatment. For the first time, we demonstrated complex pore structures of thick ( <math><mrow><mo>></mo> <mn>100</mn> <mrow><mtext>  </mtext></mrow> <mrow><mtext>microns</mtext></mrow> </mrow> </math> ) MRSA biofilms <i>in situ</i> with an unprecedented level of detail.</p><p><strong>Conclusions: </strong>The proposed rapid noninvasive detection/quantification of MRSA biofilms on metal surfaces and delineation of their complex network of pores opens new venues for label-free MRSA detection in preclinical models of trauma surgery, expansion to other bacterial strains, and further clinical translation.</p>\",\"PeriodicalId\":15264,\"journal\":{\"name\":\"Journal of Biomedical Optics\",\"volume\":\"30 4\",\"pages\":\"046003\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11960790/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomedical Optics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JBO.30.4.046003\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Optics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JBO.30.4.046003","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

意义:骨科植入物相关感染主要是由细菌生物膜形成引起的严重并发症,通常以抗生素耐药性增加和治疗反应减弱为特征。然而,目前还没有方法在术中识别生物膜——外科医生仅仅依靠他们的眼睛和手,无法检测或区分感染组织来确定污染的位置和程度。目的:作为解决这一未满足的临床需求的第一步,在这里,我们开发了一种基于光学相干断层扫描(OCT)的成像方法,能够原位检测和定量由耐甲氧西林金黄色葡萄球菌(MRSA)形成的最危险的骨科生物膜之一。方法:在骨科硬件上生长生物膜,通过基于直方图的OCT图像多参数纹理分析识别MRSA不同的光学特征,并通过生物发光成像和扫描电镜支持研究结果。在相同的实验条件下,我们鉴定了大肠杆菌(E. coli)生物膜的光学特征,并用它来区分和量化MRSA-E中的两个物种。杆菌生物膜。结果:开发的基于oct的方法成功地测试了(1)MRSA菌落描绘,(2)金属硬件检测(临床翻译的一个重要特征,大多数骨科硬件的金属表面不是平坦的),(3)生物膜厚度和粗糙度的自动量化,以及(4)孔隙识别,从而评估孔隙作用的能力-孔隙是与生物膜成熟度和治疗反应相关的关键生物学指标之一。我们首次以前所未有的细节水平原位展示了厚(bbb100微米)MRSA生物膜的复杂孔隙结构。结论:提出的金属表面MRSA生物膜的快速无创检测/定量及其复杂孔隙网络的描绘为创伤手术临床前模型的无标记MRSA检测开辟了新的领域,扩展到其他细菌菌株,并进一步进行临床转化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optical coherence tomography for label-free detection and characterization of methicillin-resistant S. aureus biofilms.

Significance: Orthopedic implant-associated infections cause serious complications primarily attributed to bacterial biofilm formation and are often characterized by increased antibiotic resistance and diminished treatment response. Yet, no methods currently exist to identify biofilms intraoperatively-surgeons rely solely on their eyes and hands and cannot detect or differentiate infected tissue to determine the location and extent of contamination.

Aim: As the first step in addressing this unmet clinical need, here, we develop an optical coherence tomography (OCT)-based imaging method capable of detection in situ and quantification of one of the most dangerous orthopedic biofilms formed by methicillin-resistant Staphylococcus aureus (MRSA).

Approach: Growing biofilms on orthopedic hardware, we identify MRSA distinct optical signature through histogram-based multi-parametric texture analysis of OCT images and support the findings with bioluminescence imaging and scanning electron microscopy. Under identical experimental conditions, we identify an optical signature of Escherichia coli (E. coli) biofilms and use it to distinguish and quantify both species within MRSA-E. coli biofilms.

Results: The developed OCT-based methodology was successfully tested for (1) MRSA colonies delineation, (2) detection of metal hardware (an important feature for clinical translation where the metal surface of most orthopedic hardware is not flat), (3) automated quantification of biofilm thickness and roughness, and (4) identification of pores and, therefore, ability to evaluate the role of porosity-one of the critical biological metrics in relation to biofilm maturity and response to treatment. For the first time, we demonstrated complex pore structures of thick ( > 100    microns ) MRSA biofilms in situ with an unprecedented level of detail.

Conclusions: The proposed rapid noninvasive detection/quantification of MRSA biofilms on metal surfaces and delineation of their complex network of pores opens new venues for label-free MRSA detection in preclinical models of trauma surgery, expansion to other bacterial strains, and further clinical translation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.40
自引率
5.70%
发文量
263
审稿时长
2 months
期刊介绍: The Journal of Biomedical Optics publishes peer-reviewed papers on the use of modern optical technology for improved health care and biomedical research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信