Zachary J White, Keshari H Sudasinghe, David C Poole, Stephanie E Hall
{"title":"运动促进雌性大鼠认知和海马线粒体复合体II的表达。","authors":"Zachary J White, Keshari H Sudasinghe, David C Poole, Stephanie E Hall","doi":"10.1113/EP092533","DOIUrl":null,"url":null,"abstract":"<p><p>Evidence supports that exercise defends against age-associated declines in brain health and protects against neurodegenerative disease. To help understand the molecular basis for the neuroprotection, we examined the impact of training on mitochondrial protein expression within the exercise-brain axis. Thirty-two F344 rats (50% male/female) were assigned randomly to 10-week treadmill training or sedentary groups. Grip strength, Morris water maze and rotarod were used to assess muscular strength, spatial learning and motor coordination, respectively. Jess automated western blotting was used to quantify mitochondrial complex expression in hippocampus and soleus skeletal muscle samples. Values are means and standard deviation. Exercised females had better spatial memory (9.16 ± 8.70 vs. 32.7 ± 22.7 s, P = 0.043) and motor coordination (69.0 ± 16.1 vs. 47.5 ± 15.6 s, P = 0.042) as well as increased soleus mass (0.043 ± 0.003 vs. 0.039 ± 0.002% body mass, P = 0.039), hippocampal mitochondrial complex II expression (1.96 ± 0.38 vs. 1.11 ± 0.33 a.u., P = 0.007), and soleus mitochondrial complex III expression (6.68 ± 1.40 vs. 4.65 ± 1.26 a.u., P = 0.025) in comparison to sedentary females. Cognitive performance and hippocampal metabolic enzyme expression were concordantly increased following the 10-week exercise intervention in females but not males. These results provide novel support for the putative involvement of cerebral mitochondrial function in the beneficial relationship between exercise and brain health.</p>","PeriodicalId":12092,"journal":{"name":"Experimental Physiology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exercise promotes cognition and hippocampal mitochondrial complex II expression in female rats.\",\"authors\":\"Zachary J White, Keshari H Sudasinghe, David C Poole, Stephanie E Hall\",\"doi\":\"10.1113/EP092533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Evidence supports that exercise defends against age-associated declines in brain health and protects against neurodegenerative disease. To help understand the molecular basis for the neuroprotection, we examined the impact of training on mitochondrial protein expression within the exercise-brain axis. Thirty-two F344 rats (50% male/female) were assigned randomly to 10-week treadmill training or sedentary groups. Grip strength, Morris water maze and rotarod were used to assess muscular strength, spatial learning and motor coordination, respectively. Jess automated western blotting was used to quantify mitochondrial complex expression in hippocampus and soleus skeletal muscle samples. Values are means and standard deviation. Exercised females had better spatial memory (9.16 ± 8.70 vs. 32.7 ± 22.7 s, P = 0.043) and motor coordination (69.0 ± 16.1 vs. 47.5 ± 15.6 s, P = 0.042) as well as increased soleus mass (0.043 ± 0.003 vs. 0.039 ± 0.002% body mass, P = 0.039), hippocampal mitochondrial complex II expression (1.96 ± 0.38 vs. 1.11 ± 0.33 a.u., P = 0.007), and soleus mitochondrial complex III expression (6.68 ± 1.40 vs. 4.65 ± 1.26 a.u., P = 0.025) in comparison to sedentary females. Cognitive performance and hippocampal metabolic enzyme expression were concordantly increased following the 10-week exercise intervention in females but not males. These results provide novel support for the putative involvement of cerebral mitochondrial function in the beneficial relationship between exercise and brain health.</p>\",\"PeriodicalId\":12092,\"journal\":{\"name\":\"Experimental Physiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1113/EP092533\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1113/EP092533","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
有证据表明,锻炼可以预防与年龄相关的大脑健康衰退,并预防神经退行性疾病。为了帮助理解神经保护的分子基础,我们检查了训练对运动-脑轴内线粒体蛋白表达的影响。32只F344大鼠(雄性和雌性各占50%)被随机分配到10周的跑步机训练组和久坐组。用握力、Morris水迷宫和旋转棒分别评估肌肉力量、空间学习和运动协调能力。采用Jess自动western blotting定量海马和比目鱼骨骼肌样品的线粒体复合物表达。值是均值和标准差。锻炼女性有更好的空间记忆(9.16±8.70和32.7±22.7 s, P = 0.043)和运动协调(69.0±16.1和47.5±15.6 s, P = 0.042),以及增加比目鱼肌质量(0.043±0.003和0.039±0.002%的体重,P = 0.039),海马线粒体复杂二世表达式(1.96±0.38和1.11±0.33 a.u, P = 0.007),第三和比目鱼肌线粒体复杂表达式(6.68±1.40和4.65±1.26 a.u, P = 0.025)相比,久坐的女性。在10周的运动干预后,女性的认知能力和海马代谢酶表达一致增加,而男性没有。这些结果为大脑线粒体功能参与运动和大脑健康之间有益关系的假设提供了新的支持。
Exercise promotes cognition and hippocampal mitochondrial complex II expression in female rats.
Evidence supports that exercise defends against age-associated declines in brain health and protects against neurodegenerative disease. To help understand the molecular basis for the neuroprotection, we examined the impact of training on mitochondrial protein expression within the exercise-brain axis. Thirty-two F344 rats (50% male/female) were assigned randomly to 10-week treadmill training or sedentary groups. Grip strength, Morris water maze and rotarod were used to assess muscular strength, spatial learning and motor coordination, respectively. Jess automated western blotting was used to quantify mitochondrial complex expression in hippocampus and soleus skeletal muscle samples. Values are means and standard deviation. Exercised females had better spatial memory (9.16 ± 8.70 vs. 32.7 ± 22.7 s, P = 0.043) and motor coordination (69.0 ± 16.1 vs. 47.5 ± 15.6 s, P = 0.042) as well as increased soleus mass (0.043 ± 0.003 vs. 0.039 ± 0.002% body mass, P = 0.039), hippocampal mitochondrial complex II expression (1.96 ± 0.38 vs. 1.11 ± 0.33 a.u., P = 0.007), and soleus mitochondrial complex III expression (6.68 ± 1.40 vs. 4.65 ± 1.26 a.u., P = 0.025) in comparison to sedentary females. Cognitive performance and hippocampal metabolic enzyme expression were concordantly increased following the 10-week exercise intervention in females but not males. These results provide novel support for the putative involvement of cerebral mitochondrial function in the beneficial relationship between exercise and brain health.
期刊介绍:
Experimental Physiology publishes research papers that report novel insights into homeostatic and adaptive responses in health, as well as those that further our understanding of pathophysiological mechanisms in disease. We encourage papers that embrace the journal’s orientation of translation and integration, including studies of the adaptive responses to exercise, acute and chronic environmental stressors, growth and aging, and diseases where integrative homeostatic mechanisms play a key role in the response to and evolution of the disease process. Examples of such diseases include hypertension, heart failure, hypoxic lung disease, endocrine and neurological disorders. We are also keen to publish research that has a translational aspect or clinical application. Comparative physiology work that can be applied to aid the understanding human physiology is also encouraged.
Manuscripts that report the use of bioinformatic, genomic, molecular, proteomic and cellular techniques to provide novel insights into integrative physiological and pathophysiological mechanisms are welcomed.