gh释放激素神经元通过短环负反馈调节下丘脑-垂体-体促轴。

IF 3.8 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM
Daniela O Gusmao, Maria E de Sousa, Ligia M M de Sousa, Josiane N Silva, Renata Frazao, Edward O List, John J Kopchick, Jose Donato
{"title":"gh释放激素神经元通过短环负反馈调节下丘脑-垂体-体促轴。","authors":"Daniela O Gusmao, Maria E de Sousa, Ligia M M de Sousa, Josiane N Silva, Renata Frazao, Edward O List, John J Kopchick, Jose Donato","doi":"10.1210/endocr/bqaf062","DOIUrl":null,"url":null,"abstract":"<p><p>Growth hormone (GH)-releasing hormone (GHRH) neurons are master regulators of GH secretion. However, the role of these cells in controlling pituitary GH secretion through short-loop negative feedback has not yet been fully clarified. Thus, GHRH-specific GH receptor (GHR) knockout (GHRHΔGHR) mice were generated, and possible consequences on GH secretion and body growth were determined. Approximately 60% of arcuate nucleus GHRH neurons exhibited GH-induced STAT5 phosphorylation, a marker of GHR-expressing cells. This response was practically eliminated in GHRHΔGHR mice. GHR ablation in GHRH-expressing cells increased body weight, lean mass, and naso-anal length in male and female mice without affecting fat mass. The higher body growth of GHRHΔGHR mice was associated with increases in GH secretion, mainly via higher pulsatile GH secretion and GH pulse amplitude. GHRHΔGHR female mice also showed increased GH pulse frequency and basal (non-pulsatile) secretion compared to control females. Liver Igf1 expression was increased only in GHRHΔGHR male mice. Mice carrying ablation of the insulin-like growth factor-1 (IGF-1) receptor (IGF1R) or both GHR and IGF1R in GHRH-expressing cells were generated. The increases in body growth and serum IGF-1 levels were significantly higher in GHRHΔGHR/IGF1R mice compared to GHRHΔGHR mice but similar to that observed in GHRHΔIGF1R mice. Electrophysiological experiments showed no acute changes in the activity of GHRH neurons after GH or IGF-1 exposure. In conclusion, GH feeds back on GHRH cells to control the hypothalamic-pituitary-somatotropic axis. However, IGF1R signaling prevails over GHR as the primary signal sensed by GHRH neurons to regulate GH secretion.</p>","PeriodicalId":11819,"journal":{"name":"Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GH-releasing hormone neurons regulate the hypothalamic-pituitary-somatotropic axis via short-loop negative feedback.\",\"authors\":\"Daniela O Gusmao, Maria E de Sousa, Ligia M M de Sousa, Josiane N Silva, Renata Frazao, Edward O List, John J Kopchick, Jose Donato\",\"doi\":\"10.1210/endocr/bqaf062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Growth hormone (GH)-releasing hormone (GHRH) neurons are master regulators of GH secretion. However, the role of these cells in controlling pituitary GH secretion through short-loop negative feedback has not yet been fully clarified. Thus, GHRH-specific GH receptor (GHR) knockout (GHRHΔGHR) mice were generated, and possible consequences on GH secretion and body growth were determined. Approximately 60% of arcuate nucleus GHRH neurons exhibited GH-induced STAT5 phosphorylation, a marker of GHR-expressing cells. This response was practically eliminated in GHRHΔGHR mice. GHR ablation in GHRH-expressing cells increased body weight, lean mass, and naso-anal length in male and female mice without affecting fat mass. The higher body growth of GHRHΔGHR mice was associated with increases in GH secretion, mainly via higher pulsatile GH secretion and GH pulse amplitude. GHRHΔGHR female mice also showed increased GH pulse frequency and basal (non-pulsatile) secretion compared to control females. Liver Igf1 expression was increased only in GHRHΔGHR male mice. Mice carrying ablation of the insulin-like growth factor-1 (IGF-1) receptor (IGF1R) or both GHR and IGF1R in GHRH-expressing cells were generated. The increases in body growth and serum IGF-1 levels were significantly higher in GHRHΔGHR/IGF1R mice compared to GHRHΔGHR mice but similar to that observed in GHRHΔIGF1R mice. Electrophysiological experiments showed no acute changes in the activity of GHRH neurons after GH or IGF-1 exposure. In conclusion, GH feeds back on GHRH cells to control the hypothalamic-pituitary-somatotropic axis. However, IGF1R signaling prevails over GHR as the primary signal sensed by GHRH neurons to regulate GH secretion.</p>\",\"PeriodicalId\":11819,\"journal\":{\"name\":\"Endocrinology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Endocrinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1210/endocr/bqaf062\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1210/endocr/bqaf062","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

生长激素(GH)释放激素(GHRH)神经元是生长激素分泌的主要调节因子。然而,这些细胞通过短环负反馈控制垂体GH分泌的作用尚未完全阐明。因此,产生了ghrh特异性GH受体(GHR)敲除(GHRHΔGHR)小鼠,并确定了对GH分泌和身体生长可能产生的影响。大约60%的弓形核GHRH神经元表现出gh诱导的STAT5磷酸化,这是ghr表达细胞的标志。这种反应在GHRHΔGHR小鼠中几乎被消除了。在表达GHR的细胞中消融GHR会增加雄性和雌性小鼠的体重、瘦质量和鼻-肛门长度,但不影响脂肪量。GHRHΔGHR小鼠的高体生长与GH分泌增加有关,主要是通过更高的搏动GH分泌和GH脉冲幅度。GHRHΔGHR与对照组相比,雌性小鼠也显示出生长激素脉冲频率和基础(非搏动性)分泌增加。肝脏Igf1表达仅在GHRHΔGHR雄性小鼠中升高。在表达胰岛素样生长因子-1 (IGF-1)受体(IGF1R)的细胞中产生消融或同时携带GHR和IGF1R的小鼠。与GHRHΔGHR小鼠相比,GHRHΔGHR/IGF1R小鼠的身体生长和血清IGF-1水平的增加明显更高,但与GHRHΔIGF1R小鼠的观察结果相似。电生理实验显示,GH或IGF-1暴露后,GHRH神经元的活性没有急性变化。总之,生长激素反馈GHRH细胞来控制下丘脑-垂体-体促轴。然而,IGF1R信号优于GHR,作为GHRH神经元调节GH分泌的主要信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GH-releasing hormone neurons regulate the hypothalamic-pituitary-somatotropic axis via short-loop negative feedback.

Growth hormone (GH)-releasing hormone (GHRH) neurons are master regulators of GH secretion. However, the role of these cells in controlling pituitary GH secretion through short-loop negative feedback has not yet been fully clarified. Thus, GHRH-specific GH receptor (GHR) knockout (GHRHΔGHR) mice were generated, and possible consequences on GH secretion and body growth were determined. Approximately 60% of arcuate nucleus GHRH neurons exhibited GH-induced STAT5 phosphorylation, a marker of GHR-expressing cells. This response was practically eliminated in GHRHΔGHR mice. GHR ablation in GHRH-expressing cells increased body weight, lean mass, and naso-anal length in male and female mice without affecting fat mass. The higher body growth of GHRHΔGHR mice was associated with increases in GH secretion, mainly via higher pulsatile GH secretion and GH pulse amplitude. GHRHΔGHR female mice also showed increased GH pulse frequency and basal (non-pulsatile) secretion compared to control females. Liver Igf1 expression was increased only in GHRHΔGHR male mice. Mice carrying ablation of the insulin-like growth factor-1 (IGF-1) receptor (IGF1R) or both GHR and IGF1R in GHRH-expressing cells were generated. The increases in body growth and serum IGF-1 levels were significantly higher in GHRHΔGHR/IGF1R mice compared to GHRHΔGHR mice but similar to that observed in GHRHΔIGF1R mice. Electrophysiological experiments showed no acute changes in the activity of GHRH neurons after GH or IGF-1 exposure. In conclusion, GH feeds back on GHRH cells to control the hypothalamic-pituitary-somatotropic axis. However, IGF1R signaling prevails over GHR as the primary signal sensed by GHRH neurons to regulate GH secretion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Endocrinology
Endocrinology 医学-内分泌学与代谢
CiteScore
8.10
自引率
4.20%
发文量
195
审稿时长
2-3 weeks
期刊介绍: The mission of Endocrinology is to be the authoritative source of emerging hormone science and to disseminate that new knowledge to scientists, clinicians, and the public in a way that will enable "hormone science to health." Endocrinology welcomes the submission of original research investigating endocrine systems and diseases at all levels of biological organization, incorporating molecular mechanistic studies, such as hormone-receptor interactions, in all areas of endocrinology, as well as cross-disciplinary and integrative studies. The editors of Endocrinology encourage the submission of research in emerging areas not traditionally recognized as endocrinology or metabolism in addition to the following traditionally recognized fields: Adrenal; Bone Health and Osteoporosis; Cardiovascular Endocrinology; Diabetes; Endocrine-Disrupting Chemicals; Endocrine Neoplasia and Cancer; Growth; Neuroendocrinology; Nuclear Receptors and Their Ligands; Obesity; Reproductive Endocrinology; Signaling Pathways; and Thyroid.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信