脑内皮细胞作为吞噬细胞:机制和意义。

IF 5.9 1区 医学 Q1 NEUROSCIENCES
Rudy T Chang, Mark J Fisher, Rachita K Sumbria
{"title":"脑内皮细胞作为吞噬细胞:机制和意义。","authors":"Rudy T Chang, Mark J Fisher, Rachita K Sumbria","doi":"10.1186/s12987-025-00637-w","DOIUrl":null,"url":null,"abstract":"<p><p>Brain microvascular endothelial cells (BECs) lining the brain capillaries form the anatomical site of the blood-brain barrier (BBB), providing a highly selective barrier to support brain homeostasis and function. While the BBB acts as a barrier to immune cells and pathogens under normal conditions, BECs can facilitate their entry into the CNS via a phagocytosis-like mechanism. A similar process is now increasingly reported for a diverse set of cargos, resulting in the categorization of BECs as \"non-professional\" phagocytes and redefining the conventional view that these cells are functionally non-phagocytic. This review aims to summarize research demonstrating the capacity of BECs to phagocytose various cargos, including aged red blood cells (RBC), myelin debris, and embolic particles. Mechanistically, BEC phagocytosis can be triggered by the exposure of phosphatidylserine on RBC, expression of adhesion molecules such as ICAM-1 and VCAM-1 on BECs, cargo-opsonization, and/or involve BEC cytoskeleton remodeling. Phagocytic activity by BECs has significant clinical implications ranging from regulation of cerebral microvascular patency (particularly by contributing to and resolving capillary stalling), clearance of brain parenchymal debris, and brain parenchymal invasion by pathogens. Further, BEC phagocytosis of RBC, which represents a cell (RBC)-in-cell (BEC) phenomenon, is implicated in hemorrhagic lesions including cerebral microhemorrhages. This review aims to shed light on BEC phagocytosis as an important function within the brain microvascular system and will delve into the underlying mechanisms, discuss the clinical implications, and identify gaps in our understanding of this phenomenon.</p>","PeriodicalId":12321,"journal":{"name":"Fluids and Barriers of the CNS","volume":"22 1","pages":"30"},"PeriodicalIF":5.9000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11959998/pdf/","citationCount":"0","resultStr":"{\"title\":\"Brain endothelial cells as phagocytes: mechanisms and implications.\",\"authors\":\"Rudy T Chang, Mark J Fisher, Rachita K Sumbria\",\"doi\":\"10.1186/s12987-025-00637-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Brain microvascular endothelial cells (BECs) lining the brain capillaries form the anatomical site of the blood-brain barrier (BBB), providing a highly selective barrier to support brain homeostasis and function. While the BBB acts as a barrier to immune cells and pathogens under normal conditions, BECs can facilitate their entry into the CNS via a phagocytosis-like mechanism. A similar process is now increasingly reported for a diverse set of cargos, resulting in the categorization of BECs as \\\"non-professional\\\" phagocytes and redefining the conventional view that these cells are functionally non-phagocytic. This review aims to summarize research demonstrating the capacity of BECs to phagocytose various cargos, including aged red blood cells (RBC), myelin debris, and embolic particles. Mechanistically, BEC phagocytosis can be triggered by the exposure of phosphatidylserine on RBC, expression of adhesion molecules such as ICAM-1 and VCAM-1 on BECs, cargo-opsonization, and/or involve BEC cytoskeleton remodeling. Phagocytic activity by BECs has significant clinical implications ranging from regulation of cerebral microvascular patency (particularly by contributing to and resolving capillary stalling), clearance of brain parenchymal debris, and brain parenchymal invasion by pathogens. Further, BEC phagocytosis of RBC, which represents a cell (RBC)-in-cell (BEC) phenomenon, is implicated in hemorrhagic lesions including cerebral microhemorrhages. This review aims to shed light on BEC phagocytosis as an important function within the brain microvascular system and will delve into the underlying mechanisms, discuss the clinical implications, and identify gaps in our understanding of this phenomenon.</p>\",\"PeriodicalId\":12321,\"journal\":{\"name\":\"Fluids and Barriers of the CNS\",\"volume\":\"22 1\",\"pages\":\"30\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11959998/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluids and Barriers of the CNS\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12987-025-00637-w\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluids and Barriers of the CNS","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12987-025-00637-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

脑微血管内皮细胞(BECs)排列在脑毛细血管内,形成血脑屏障(BBB)的解剖部位,为支持大脑稳态和功能提供了高度选择性的屏障。血脑屏障在正常情况下是免疫细胞和病原体的屏障,而BECs可以通过类似吞噬的机制促进它们进入中枢神经系统。类似的过程现在越来越多地出现在不同种类的货物中,导致BECs被归类为“非专业”吞噬细胞,并重新定义了这些细胞在功能上是非吞噬细胞的传统观点。这篇综述旨在总结证明BECs吞噬各种货物的能力的研究,包括老化的红细胞(RBC)、髓磷脂碎片和栓塞颗粒。从机制上讲,BEC吞噬可通过暴露于红细胞上的磷脂酰丝氨酸、粘附分子如ICAM-1和VCAM-1在BEC上的表达、货物活化和/或涉及BEC细胞骨架重塑而触发。BECs的吞噬活性具有重要的临床意义,包括调节脑微血管通畅(特别是通过促进和解决毛细血管阻塞)、清除脑实质碎片和病原体侵入脑实质。此外,红细胞的BEC吞噬,代表细胞(RBC)-细胞(BEC)现象,与包括脑微出血在内的出血性病变有关。本综述旨在揭示BEC吞噬在脑微血管系统中的重要功能,并将深入探讨其潜在机制,讨论其临床意义,并确定我们对这一现象的理解差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Brain endothelial cells as phagocytes: mechanisms and implications.

Brain microvascular endothelial cells (BECs) lining the brain capillaries form the anatomical site of the blood-brain barrier (BBB), providing a highly selective barrier to support brain homeostasis and function. While the BBB acts as a barrier to immune cells and pathogens under normal conditions, BECs can facilitate their entry into the CNS via a phagocytosis-like mechanism. A similar process is now increasingly reported for a diverse set of cargos, resulting in the categorization of BECs as "non-professional" phagocytes and redefining the conventional view that these cells are functionally non-phagocytic. This review aims to summarize research demonstrating the capacity of BECs to phagocytose various cargos, including aged red blood cells (RBC), myelin debris, and embolic particles. Mechanistically, BEC phagocytosis can be triggered by the exposure of phosphatidylserine on RBC, expression of adhesion molecules such as ICAM-1 and VCAM-1 on BECs, cargo-opsonization, and/or involve BEC cytoskeleton remodeling. Phagocytic activity by BECs has significant clinical implications ranging from regulation of cerebral microvascular patency (particularly by contributing to and resolving capillary stalling), clearance of brain parenchymal debris, and brain parenchymal invasion by pathogens. Further, BEC phagocytosis of RBC, which represents a cell (RBC)-in-cell (BEC) phenomenon, is implicated in hemorrhagic lesions including cerebral microhemorrhages. This review aims to shed light on BEC phagocytosis as an important function within the brain microvascular system and will delve into the underlying mechanisms, discuss the clinical implications, and identify gaps in our understanding of this phenomenon.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fluids and Barriers of the CNS
Fluids and Barriers of the CNS Neuroscience-Developmental Neuroscience
CiteScore
10.70
自引率
8.20%
发文量
94
审稿时长
14 weeks
期刊介绍: "Fluids and Barriers of the CNS" is a scholarly open access journal that specializes in the intricate world of the central nervous system's fluids and barriers, which are pivotal for the health and well-being of the human body. This journal is a peer-reviewed platform that welcomes research manuscripts exploring the full spectrum of CNS fluids and barriers, with a particular focus on their roles in both health and disease. At the heart of this journal's interest is the cerebrospinal fluid (CSF), a vital fluid that circulates within the brain and spinal cord, playing a multifaceted role in the normal functioning of the brain and in various neurological conditions. The journal delves into the composition, circulation, and absorption of CSF, as well as its relationship with the parenchymal interstitial fluid and the neurovascular unit at the blood-brain barrier (BBB).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信