Imran Ali, Abdul Rehman, Nadia Taimur, Irum Raza, Iffat Naz
{"title":"乙烯对双酚a抑制拟南芥初生根伸长的影响。","authors":"Imran Ali, Abdul Rehman, Nadia Taimur, Irum Raza, Iffat Naz","doi":"10.1080/15226514.2025.2485303","DOIUrl":null,"url":null,"abstract":"<p><p>Bisphenol A (BPA), a widespread industrial chemical, significantly inhibits root elongation, reducing it by 2%, 32%, and 64% at concentrations of 10, 20, 30, and 40 µM, respectively. This study delves into the interplay between ethylene and auxin in mediating BPA-induced primary root growth inhibition in <i>Arabidopsis thaliana</i>. Furthermore, ethylene modulates BPA sensitivity, as evidenced by reduced inhibition in ethylene-insensitive mutants (etr1-1, etr1-3, ein2-1) and heightened sensitivity in ethylene-overproducing lines (eto1-1, ctr1-1). Ethylene biosynthesis inhibitors (AVG, CoCl2) significantly decreased BPA-induced root inhibition. Treated plants showed increased expression of ethylene biosynthetic genes (ACS2, ACS6, ACS8, ACO1, ACO2). Auxin involvement was evident as aux1-7 mutants showed reduced sensitivity, and NPA (an auxin transport inhibitor) improved root growth. BPA and ACC treatments elevated DR5 and EBS activity, indicating enhanced ethylene and auxin signaling. AVG or NPA effects on DR5 activity under BPA stress revealed that ethylene modulates auxin accumulation and distribution. The study suggests that ethylene regulates BPA-mediated root inhibition by influencing AUX1 expression and auxin distribution, offering new insights into the interaction between ethylene, auxin, and BPA in plant growth.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1-9"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of ethylene on bisphenol A-inhibited primary root elongation in <i>Arabidopsis thaliana</i>.\",\"authors\":\"Imran Ali, Abdul Rehman, Nadia Taimur, Irum Raza, Iffat Naz\",\"doi\":\"10.1080/15226514.2025.2485303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bisphenol A (BPA), a widespread industrial chemical, significantly inhibits root elongation, reducing it by 2%, 32%, and 64% at concentrations of 10, 20, 30, and 40 µM, respectively. This study delves into the interplay between ethylene and auxin in mediating BPA-induced primary root growth inhibition in <i>Arabidopsis thaliana</i>. Furthermore, ethylene modulates BPA sensitivity, as evidenced by reduced inhibition in ethylene-insensitive mutants (etr1-1, etr1-3, ein2-1) and heightened sensitivity in ethylene-overproducing lines (eto1-1, ctr1-1). Ethylene biosynthesis inhibitors (AVG, CoCl2) significantly decreased BPA-induced root inhibition. Treated plants showed increased expression of ethylene biosynthetic genes (ACS2, ACS6, ACS8, ACO1, ACO2). Auxin involvement was evident as aux1-7 mutants showed reduced sensitivity, and NPA (an auxin transport inhibitor) improved root growth. BPA and ACC treatments elevated DR5 and EBS activity, indicating enhanced ethylene and auxin signaling. AVG or NPA effects on DR5 activity under BPA stress revealed that ethylene modulates auxin accumulation and distribution. The study suggests that ethylene regulates BPA-mediated root inhibition by influencing AUX1 expression and auxin distribution, offering new insights into the interaction between ethylene, auxin, and BPA in plant growth.</p>\",\"PeriodicalId\":14235,\"journal\":{\"name\":\"International Journal of Phytoremediation\",\"volume\":\" \",\"pages\":\"1-9\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Phytoremediation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/15226514.2025.2485303\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Phytoremediation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15226514.2025.2485303","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Effect of ethylene on bisphenol A-inhibited primary root elongation in Arabidopsis thaliana.
Bisphenol A (BPA), a widespread industrial chemical, significantly inhibits root elongation, reducing it by 2%, 32%, and 64% at concentrations of 10, 20, 30, and 40 µM, respectively. This study delves into the interplay between ethylene and auxin in mediating BPA-induced primary root growth inhibition in Arabidopsis thaliana. Furthermore, ethylene modulates BPA sensitivity, as evidenced by reduced inhibition in ethylene-insensitive mutants (etr1-1, etr1-3, ein2-1) and heightened sensitivity in ethylene-overproducing lines (eto1-1, ctr1-1). Ethylene biosynthesis inhibitors (AVG, CoCl2) significantly decreased BPA-induced root inhibition. Treated plants showed increased expression of ethylene biosynthetic genes (ACS2, ACS6, ACS8, ACO1, ACO2). Auxin involvement was evident as aux1-7 mutants showed reduced sensitivity, and NPA (an auxin transport inhibitor) improved root growth. BPA and ACC treatments elevated DR5 and EBS activity, indicating enhanced ethylene and auxin signaling. AVG or NPA effects on DR5 activity under BPA stress revealed that ethylene modulates auxin accumulation and distribution. The study suggests that ethylene regulates BPA-mediated root inhibition by influencing AUX1 expression and auxin distribution, offering new insights into the interaction between ethylene, auxin, and BPA in plant growth.
期刊介绍:
The International Journal of Phytoremediation (IJP) is the first journal devoted to the publication of laboratory and field research describing the use of plant systems to solve environmental problems by enabling the remediation of soil, water, and air quality and by restoring ecosystem services in managed landscapes. Traditional phytoremediation has largely focused on soil and groundwater clean-up of hazardous contaminants. Phytotechnology expands this umbrella to include many of the natural resource management challenges we face in cities, on farms, and other landscapes more integrated with daily public activities. Wetlands that treat wastewater, rain gardens that treat stormwater, poplar tree plantings that contain pollutants, urban tree canopies that treat air pollution, and specialized plants that treat decommissioned mine sites are just a few examples of phytotechnologies.