空间尘埃介导的分子氢形成机制的从头算动力学研究。

IF 5.9 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yuzhen Guo, David R McKenzie
{"title":"空间尘埃介导的分子氢形成机制的从头算动力学研究。","authors":"Yuzhen Guo, David R McKenzie","doi":"10.1038/s42004-025-01489-z","DOIUrl":null,"url":null,"abstract":"<p><p>The reason for the abundance of molecular hydrogen (H<sub>2</sub>) in space remains unresolved. Here we study collision dynamics under spacelike conditions to test H<sub>2</sub> formation mechanisms where carbonaceous dust grains may have a catalytic role. Density functional theory molecular dynamics simulates atomic hydrogen capture and H<sub>2</sub> formation on the surface of buckminsterfullerene as a carbonaceous cosmic dust model. Maximally localized Wannier functions are applied to examine the electronic bonding during transition states. The fullerene surface is shown to be effective at warm (50K) and low (10K) temperatures in achieving atomic H chemisorption, potentially explaining the observed broad temperature range for efficient H<sub>2</sub> formation. We revise the Eley-Rideal mechanism and propose that both it and the Langmuir-Hinshelwood mechanism, induced by thermal hopping, contribute to bursts of H<sub>2</sub> formation during energetic events. Additionally, we show how fullerene maintains the abundance of H<sub>2</sub> in space by selectively preventing H<sub>2</sub> molecules from capture.</p>","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":"8 1","pages":"97"},"PeriodicalIF":5.9000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11961578/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ab-initio dynamic study of mechanisms for dust-mediated molecular hydrogen formation in space.\",\"authors\":\"Yuzhen Guo, David R McKenzie\",\"doi\":\"10.1038/s42004-025-01489-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The reason for the abundance of molecular hydrogen (H<sub>2</sub>) in space remains unresolved. Here we study collision dynamics under spacelike conditions to test H<sub>2</sub> formation mechanisms where carbonaceous dust grains may have a catalytic role. Density functional theory molecular dynamics simulates atomic hydrogen capture and H<sub>2</sub> formation on the surface of buckminsterfullerene as a carbonaceous cosmic dust model. Maximally localized Wannier functions are applied to examine the electronic bonding during transition states. The fullerene surface is shown to be effective at warm (50K) and low (10K) temperatures in achieving atomic H chemisorption, potentially explaining the observed broad temperature range for efficient H<sub>2</sub> formation. We revise the Eley-Rideal mechanism and propose that both it and the Langmuir-Hinshelwood mechanism, induced by thermal hopping, contribute to bursts of H<sub>2</sub> formation during energetic events. Additionally, we show how fullerene maintains the abundance of H<sub>2</sub> in space by selectively preventing H<sub>2</sub> molecules from capture.</p>\",\"PeriodicalId\":10529,\"journal\":{\"name\":\"Communications Chemistry\",\"volume\":\"8 1\",\"pages\":\"97\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11961578/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1038/s42004-025-01489-z\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s42004-025-01489-z","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

太空中氢分子(H2)丰富的原因仍未得到解决。本文研究了类空间条件下的碰撞动力学,以测试氢的形成机制,其中碳质尘埃颗粒可能具有催化作用。密度泛函理论分子动力学模拟原子氢捕获和H2形成在巴克敏斯特富勒烯表面作为一个碳质宇宙尘埃模型。应用最大定域万尼尔函数对过渡态的电子成键进行了研究。富勒烯表面被证明在高温(50K)和低温(10K)下都能有效地实现氢原子的化学吸附,这可能解释了观察到的H2有效形成的宽温度范围。我们修正了eley - ideal机制,并提出它和Langmuir-Hinshelwood机制都是由热跳引起的,有助于在高能事件中H2形成的爆发。此外,我们展示了富勒烯如何通过选择性地阻止H2分子被捕获来维持空间中H2的丰度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ab-initio dynamic study of mechanisms for dust-mediated molecular hydrogen formation in space.

The reason for the abundance of molecular hydrogen (H2) in space remains unresolved. Here we study collision dynamics under spacelike conditions to test H2 formation mechanisms where carbonaceous dust grains may have a catalytic role. Density functional theory molecular dynamics simulates atomic hydrogen capture and H2 formation on the surface of buckminsterfullerene as a carbonaceous cosmic dust model. Maximally localized Wannier functions are applied to examine the electronic bonding during transition states. The fullerene surface is shown to be effective at warm (50K) and low (10K) temperatures in achieving atomic H chemisorption, potentially explaining the observed broad temperature range for efficient H2 formation. We revise the Eley-Rideal mechanism and propose that both it and the Langmuir-Hinshelwood mechanism, induced by thermal hopping, contribute to bursts of H2 formation during energetic events. Additionally, we show how fullerene maintains the abundance of H2 in space by selectively preventing H2 molecules from capture.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Chemistry
Communications Chemistry Chemistry-General Chemistry
CiteScore
7.70
自引率
1.70%
发文量
146
审稿时长
13 weeks
期刊介绍: Communications Chemistry is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the chemical sciences. Research papers published by the journal represent significant advances bringing new chemical insight to a specialized area of research. We also aim to provide a community forum for issues of importance to all chemists, regardless of sub-discipline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信