Lin Cheng, Yanglu Wang, Jingyang Guan, Hongkui Deng
{"title":"解码人类化学重编程:机制和原理。","authors":"Lin Cheng, Yanglu Wang, Jingyang Guan, Hongkui Deng","doi":"10.1016/j.tibs.2025.03.004","DOIUrl":null,"url":null,"abstract":"<p><p>Pluripotent stem cells hold great promise as an unlimited resource for regenerative medicine due to their capacity to self-renew and differentiate into various cell types. Chemical reprogramming using small molecules precisely regulates cell signaling pathways and epigenetic states, providing a novel approach for generating human pluripotent stem cells. Since its successful establishment in 2022, human chemical reprogramming has rapidly achieved significant progress, demonstrating its significant potential in regenerative medicine. Mechanistic analyses have revealed distinct molecular pathways and regulatory mechanisms unique to chemical reprogramming, differing from traditional transcription-factor-driven methods. In this review we highlight recent advancements in our understanding of the mechanisms of human chemical reprogramming, with the goal of enhancing insights into the principles of cell fate control and advancing regenerative medicine.</p>","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":" ","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decoding human chemical reprogramming: mechanisms and principles.\",\"authors\":\"Lin Cheng, Yanglu Wang, Jingyang Guan, Hongkui Deng\",\"doi\":\"10.1016/j.tibs.2025.03.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pluripotent stem cells hold great promise as an unlimited resource for regenerative medicine due to their capacity to self-renew and differentiate into various cell types. Chemical reprogramming using small molecules precisely regulates cell signaling pathways and epigenetic states, providing a novel approach for generating human pluripotent stem cells. Since its successful establishment in 2022, human chemical reprogramming has rapidly achieved significant progress, demonstrating its significant potential in regenerative medicine. Mechanistic analyses have revealed distinct molecular pathways and regulatory mechanisms unique to chemical reprogramming, differing from traditional transcription-factor-driven methods. In this review we highlight recent advancements in our understanding of the mechanisms of human chemical reprogramming, with the goal of enhancing insights into the principles of cell fate control and advancing regenerative medicine.</p>\",\"PeriodicalId\":440,\"journal\":{\"name\":\"Trends in Biochemical Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Biochemical Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tibs.2025.03.004\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Biochemical Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tibs.2025.03.004","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Decoding human chemical reprogramming: mechanisms and principles.
Pluripotent stem cells hold great promise as an unlimited resource for regenerative medicine due to their capacity to self-renew and differentiate into various cell types. Chemical reprogramming using small molecules precisely regulates cell signaling pathways and epigenetic states, providing a novel approach for generating human pluripotent stem cells. Since its successful establishment in 2022, human chemical reprogramming has rapidly achieved significant progress, demonstrating its significant potential in regenerative medicine. Mechanistic analyses have revealed distinct molecular pathways and regulatory mechanisms unique to chemical reprogramming, differing from traditional transcription-factor-driven methods. In this review we highlight recent advancements in our understanding of the mechanisms of human chemical reprogramming, with the goal of enhancing insights into the principles of cell fate control and advancing regenerative medicine.
期刊介绍:
For over 40 years, Trends in Biochemical Sciences (TIBS) has been a leading publication keeping readers informed about recent advances in all areas of biochemistry and molecular biology. Through monthly, peer-reviewed issues, TIBS covers a wide range of topics, from traditional subjects like protein structure and function to emerging areas in signaling and metabolism. Articles are curated by the Editor and authored by top researchers in their fields, with a focus on moving beyond simple literature summaries to providing novel insights and perspectives. Each issue primarily features concise and timely Reviews and Opinions, supplemented by shorter articles including Spotlights, Forums, and Technology of the Month, as well as impactful pieces like Science & Society and Scientific Life articles.