Yinong Li, Yawei Wen, Leticia C. Beltrán, Li Zhu, Shishan Tian, Jialong Liu, Xuan Zhou, Piaoyi Chen, Edward H. Egelman, Ming Zheng, Zhiwei Lin
{"title":"通过亚纳米分辨率结构测定了解 DNA 编码碳纳米管分拣和传感技术","authors":"Yinong Li, Yawei Wen, Leticia C. Beltrán, Li Zhu, Shishan Tian, Jialong Liu, Xuan Zhou, Piaoyi Chen, Edward H. Egelman, Ming Zheng, Zhiwei Lin","doi":"10.1126/sciadv.adt9844","DOIUrl":null,"url":null,"abstract":"<div >DNA has demonstrated the abilities to differentiate single-wall carbon nanotubes (SWCNTs) with various chiralities and manipulate their analyte sensing properties. However, the fundamental mechanisms underlying these remarkable abilities remain unclear due to the lack of high-resolution determination of DNA structures on SWCNTs. Here, we combine atomic force microscopy and single-particle cryo–electron microscopy to determine DNA structures on five different types of single-chirality SWCNTs, achieving unprecedented subnanometer resolution. This resolution enables the direct observation of left-handed helical DNA structures with pitches ranging from 1.59 to 2.20 nm, depending on the DNA sequence and nanotube chirality. These findings provide structural insights into the mechanisms by which DNA differentiates the chirality of SWCNTs, and governs the sensitivity, dynamic response range, and analyte differentiability of SWCNT sensors. We propose a non–Watson-Crick hydrogen-bonding network model, which not only accounts for the observed ordered DNA structures but also facilitates the design of DNA sequences for targeted SWCNT purification and desired SWCNT sensor performance.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 14","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adt9844","citationCount":"0","resultStr":"{\"title\":\"Understanding DNA-encoded carbon nanotube sorting and sensing via sub-nm-resolution structural determination\",\"authors\":\"Yinong Li, Yawei Wen, Leticia C. Beltrán, Li Zhu, Shishan Tian, Jialong Liu, Xuan Zhou, Piaoyi Chen, Edward H. Egelman, Ming Zheng, Zhiwei Lin\",\"doi\":\"10.1126/sciadv.adt9844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >DNA has demonstrated the abilities to differentiate single-wall carbon nanotubes (SWCNTs) with various chiralities and manipulate their analyte sensing properties. However, the fundamental mechanisms underlying these remarkable abilities remain unclear due to the lack of high-resolution determination of DNA structures on SWCNTs. Here, we combine atomic force microscopy and single-particle cryo–electron microscopy to determine DNA structures on five different types of single-chirality SWCNTs, achieving unprecedented subnanometer resolution. This resolution enables the direct observation of left-handed helical DNA structures with pitches ranging from 1.59 to 2.20 nm, depending on the DNA sequence and nanotube chirality. These findings provide structural insights into the mechanisms by which DNA differentiates the chirality of SWCNTs, and governs the sensitivity, dynamic response range, and analyte differentiability of SWCNT sensors. We propose a non–Watson-Crick hydrogen-bonding network model, which not only accounts for the observed ordered DNA structures but also facilitates the design of DNA sequences for targeted SWCNT purification and desired SWCNT sensor performance.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 14\",\"pages\":\"\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adt9844\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adt9844\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adt9844","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Understanding DNA-encoded carbon nanotube sorting and sensing via sub-nm-resolution structural determination
DNA has demonstrated the abilities to differentiate single-wall carbon nanotubes (SWCNTs) with various chiralities and manipulate their analyte sensing properties. However, the fundamental mechanisms underlying these remarkable abilities remain unclear due to the lack of high-resolution determination of DNA structures on SWCNTs. Here, we combine atomic force microscopy and single-particle cryo–electron microscopy to determine DNA structures on five different types of single-chirality SWCNTs, achieving unprecedented subnanometer resolution. This resolution enables the direct observation of left-handed helical DNA structures with pitches ranging from 1.59 to 2.20 nm, depending on the DNA sequence and nanotube chirality. These findings provide structural insights into the mechanisms by which DNA differentiates the chirality of SWCNTs, and governs the sensitivity, dynamic response range, and analyte differentiability of SWCNT sensors. We propose a non–Watson-Crick hydrogen-bonding network model, which not only accounts for the observed ordered DNA structures but also facilitates the design of DNA sequences for targeted SWCNT purification and desired SWCNT sensor performance.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.