通过亚纳米分辨率结构测定了解 DNA 编码碳纳米管分拣和传感技术

IF 12.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yinong Li, Yawei Wen, Leticia C. Beltrán, Li Zhu, Shishan Tian, Jialong Liu, Xuan Zhou, Piaoyi Chen, Edward H. Egelman, Ming Zheng, Zhiwei Lin
{"title":"通过亚纳米分辨率结构测定了解 DNA 编码碳纳米管分拣和传感技术","authors":"Yinong Li,&nbsp;Yawei Wen,&nbsp;Leticia C. Beltrán,&nbsp;Li Zhu,&nbsp;Shishan Tian,&nbsp;Jialong Liu,&nbsp;Xuan Zhou,&nbsp;Piaoyi Chen,&nbsp;Edward H. Egelman,&nbsp;Ming Zheng,&nbsp;Zhiwei Lin","doi":"10.1126/sciadv.adt9844","DOIUrl":null,"url":null,"abstract":"<div >DNA has demonstrated the abilities to differentiate single-wall carbon nanotubes (SWCNTs) with various chiralities and manipulate their analyte sensing properties. However, the fundamental mechanisms underlying these remarkable abilities remain unclear due to the lack of high-resolution determination of DNA structures on SWCNTs. Here, we combine atomic force microscopy and single-particle cryo–electron microscopy to determine DNA structures on five different types of single-chirality SWCNTs, achieving unprecedented subnanometer resolution. This resolution enables the direct observation of left-handed helical DNA structures with pitches ranging from 1.59 to 2.20 nm, depending on the DNA sequence and nanotube chirality. These findings provide structural insights into the mechanisms by which DNA differentiates the chirality of SWCNTs, and governs the sensitivity, dynamic response range, and analyte differentiability of SWCNT sensors. We propose a non–Watson-Crick hydrogen-bonding network model, which not only accounts for the observed ordered DNA structures but also facilitates the design of DNA sequences for targeted SWCNT purification and desired SWCNT sensor performance.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 14","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adt9844","citationCount":"0","resultStr":"{\"title\":\"Understanding DNA-encoded carbon nanotube sorting and sensing via sub-nm-resolution structural determination\",\"authors\":\"Yinong Li,&nbsp;Yawei Wen,&nbsp;Leticia C. Beltrán,&nbsp;Li Zhu,&nbsp;Shishan Tian,&nbsp;Jialong Liu,&nbsp;Xuan Zhou,&nbsp;Piaoyi Chen,&nbsp;Edward H. Egelman,&nbsp;Ming Zheng,&nbsp;Zhiwei Lin\",\"doi\":\"10.1126/sciadv.adt9844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >DNA has demonstrated the abilities to differentiate single-wall carbon nanotubes (SWCNTs) with various chiralities and manipulate their analyte sensing properties. However, the fundamental mechanisms underlying these remarkable abilities remain unclear due to the lack of high-resolution determination of DNA structures on SWCNTs. Here, we combine atomic force microscopy and single-particle cryo–electron microscopy to determine DNA structures on five different types of single-chirality SWCNTs, achieving unprecedented subnanometer resolution. This resolution enables the direct observation of left-handed helical DNA structures with pitches ranging from 1.59 to 2.20 nm, depending on the DNA sequence and nanotube chirality. These findings provide structural insights into the mechanisms by which DNA differentiates the chirality of SWCNTs, and governs the sensitivity, dynamic response range, and analyte differentiability of SWCNT sensors. We propose a non–Watson-Crick hydrogen-bonding network model, which not only accounts for the observed ordered DNA structures but also facilitates the design of DNA sequences for targeted SWCNT purification and desired SWCNT sensor performance.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 14\",\"pages\":\"\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adt9844\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adt9844\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adt9844","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

DNA已经证明了区分具有不同手性的单壁碳纳米管(SWCNTs)并操纵其分析物传感特性的能力。然而,由于缺乏对SWCNTs上DNA结构的高分辨率测定,这些卓越能力的基本机制尚不清楚。在这里,我们结合原子力显微镜和单粒子低温电子显微镜来确定五种不同类型的单手性SWCNTs的DNA结构,实现了前所未有的亚纳米分辨率。根据DNA序列和纳米管手性的不同,这种分辨率可以直接观察到左旋螺旋DNA结构,其间距从1.59到2.20 nm不等。这些发现为DNA区分SWCNTs手性的机制提供了结构性见解,并控制了SWCNTs传感器的灵敏度、动态响应范围和分析物可区分性。我们提出了一个非沃森-克里克氢键网络模型,该模型不仅解释了观察到的有序DNA结构,而且有助于设计靶向swcnts纯化的DNA序列和期望的swcnts传感器性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Understanding DNA-encoded carbon nanotube sorting and sensing via sub-nm-resolution structural determination

Understanding DNA-encoded carbon nanotube sorting and sensing via sub-nm-resolution structural determination
DNA has demonstrated the abilities to differentiate single-wall carbon nanotubes (SWCNTs) with various chiralities and manipulate their analyte sensing properties. However, the fundamental mechanisms underlying these remarkable abilities remain unclear due to the lack of high-resolution determination of DNA structures on SWCNTs. Here, we combine atomic force microscopy and single-particle cryo–electron microscopy to determine DNA structures on five different types of single-chirality SWCNTs, achieving unprecedented subnanometer resolution. This resolution enables the direct observation of left-handed helical DNA structures with pitches ranging from 1.59 to 2.20 nm, depending on the DNA sequence and nanotube chirality. These findings provide structural insights into the mechanisms by which DNA differentiates the chirality of SWCNTs, and governs the sensitivity, dynamic response range, and analyte differentiability of SWCNT sensors. We propose a non–Watson-Crick hydrogen-bonding network model, which not only accounts for the observed ordered DNA structures but also facilitates the design of DNA sequences for targeted SWCNT purification and desired SWCNT sensor performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信