Ashlee Aiello, Stefan Mitterhofer, Jan Obrzut, Karissa L. Jensen, Patryk Wąsik, Chiara Barretta, Gernot Oreski, Stephanie S. Watson, Lipiin Sung, Xiaohong Gu
{"title":"利用拉曼光谱对新兴聚丙烯基光伏背板的加速环境老化进行空间分辨评估","authors":"Ashlee Aiello, Stefan Mitterhofer, Jan Obrzut, Karissa L. Jensen, Patryk Wąsik, Chiara Barretta, Gernot Oreski, Stephanie S. Watson, Lipiin Sung, Xiaohong Gu","doi":"10.1002/pip.3904","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Accelerated aging was used to assess environmental degradation in emerging co-extruded polypropylene (PP)-based backsheets under three different environmental conditions (65°C/20% relative humidity (RH), 75°C/20% RH, and 75°C/50% RH). Although differential scanning calorimetry did not measure crystallinity changes with exposure, spatially resolved Raman spectroscopy identified crystallinity increases in the core layer of aged samples, indicating a heterogeneous postcrystallization process. The Raman results were in agreement with synchrotron-based microfocused wide-angle X-ray scattering measurements. Cross-sectional nanoindentation was used to correlate localized crystallinity shifts with changes in Young's modulus. A similar trend was found where increased modulus was measured in the core layer, supporting the relationship between modulus and crystallinity. Finally, dielectric characterization was used to assess the impact of these material property changes on performance. While changes in the backsheet material properties and dielectric performance were observed with accelerated aging, these shifts generally equilibrated with time, indicating overall stability in response to environmental stressors. Additionally, the identified heterogeneous material property changes indicate that spatially resolved crystallinity measurements may be a valuable early failure indicator to be used in the assessment of PV backsheet long-term durability.</p>\n </div>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"33 5","pages":"652-662"},"PeriodicalIF":8.0000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Spatially Resolved Evaluation of Accelerated Environmental Aging on Emerging Polypropylene-Based Photovoltaic Backsheets Using Raman Spectroscopy\",\"authors\":\"Ashlee Aiello, Stefan Mitterhofer, Jan Obrzut, Karissa L. Jensen, Patryk Wąsik, Chiara Barretta, Gernot Oreski, Stephanie S. Watson, Lipiin Sung, Xiaohong Gu\",\"doi\":\"10.1002/pip.3904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Accelerated aging was used to assess environmental degradation in emerging co-extruded polypropylene (PP)-based backsheets under three different environmental conditions (65°C/20% relative humidity (RH), 75°C/20% RH, and 75°C/50% RH). Although differential scanning calorimetry did not measure crystallinity changes with exposure, spatially resolved Raman spectroscopy identified crystallinity increases in the core layer of aged samples, indicating a heterogeneous postcrystallization process. The Raman results were in agreement with synchrotron-based microfocused wide-angle X-ray scattering measurements. Cross-sectional nanoindentation was used to correlate localized crystallinity shifts with changes in Young's modulus. A similar trend was found where increased modulus was measured in the core layer, supporting the relationship between modulus and crystallinity. Finally, dielectric characterization was used to assess the impact of these material property changes on performance. While changes in the backsheet material properties and dielectric performance were observed with accelerated aging, these shifts generally equilibrated with time, indicating overall stability in response to environmental stressors. Additionally, the identified heterogeneous material property changes indicate that spatially resolved crystallinity measurements may be a valuable early failure indicator to be used in the assessment of PV backsheet long-term durability.</p>\\n </div>\",\"PeriodicalId\":223,\"journal\":{\"name\":\"Progress in Photovoltaics\",\"volume\":\"33 5\",\"pages\":\"652-662\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Photovoltaics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/pip.3904\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Photovoltaics","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pip.3904","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
A Spatially Resolved Evaluation of Accelerated Environmental Aging on Emerging Polypropylene-Based Photovoltaic Backsheets Using Raman Spectroscopy
Accelerated aging was used to assess environmental degradation in emerging co-extruded polypropylene (PP)-based backsheets under three different environmental conditions (65°C/20% relative humidity (RH), 75°C/20% RH, and 75°C/50% RH). Although differential scanning calorimetry did not measure crystallinity changes with exposure, spatially resolved Raman spectroscopy identified crystallinity increases in the core layer of aged samples, indicating a heterogeneous postcrystallization process. The Raman results were in agreement with synchrotron-based microfocused wide-angle X-ray scattering measurements. Cross-sectional nanoindentation was used to correlate localized crystallinity shifts with changes in Young's modulus. A similar trend was found where increased modulus was measured in the core layer, supporting the relationship between modulus and crystallinity. Finally, dielectric characterization was used to assess the impact of these material property changes on performance. While changes in the backsheet material properties and dielectric performance were observed with accelerated aging, these shifts generally equilibrated with time, indicating overall stability in response to environmental stressors. Additionally, the identified heterogeneous material property changes indicate that spatially resolved crystallinity measurements may be a valuable early failure indicator to be used in the assessment of PV backsheet long-term durability.
期刊介绍:
Progress in Photovoltaics offers a prestigious forum for reporting advances in this rapidly developing technology, aiming to reach all interested professionals, researchers and energy policy-makers.
The key criterion is that all papers submitted should report substantial “progress” in photovoltaics.
Papers are encouraged that report substantial “progress” such as gains in independently certified solar cell efficiency, eligible for a new entry in the journal''s widely referenced Solar Cell Efficiency Tables.
Examples of papers that will not be considered for publication are those that report development in materials without relation to data on cell performance, routine analysis, characterisation or modelling of cells or processing sequences, routine reports of system performance, improvements in electronic hardware design, or country programs, although invited papers may occasionally be solicited in these areas to capture accumulated “progress”.