轻型商用车车载光伏系统性能分析

IF 8 2区 材料科学 Q1 ENERGY & FUELS
Neel Patel, Evgenii Sovetkin, Bart Pieters, Karsten Bittkau, Kaining Ding, Robby Peibst, Hilke Fischer, Angèle Reinders
{"title":"轻型商用车车载光伏系统性能分析","authors":"Neel Patel,&nbsp;Evgenii Sovetkin,&nbsp;Bart Pieters,&nbsp;Karsten Bittkau,&nbsp;Kaining Ding,&nbsp;Robby Peibst,&nbsp;Hilke Fischer,&nbsp;Angèle Reinders","doi":"10.1002/pip.3897","DOIUrl":null,"url":null,"abstract":"<p>We present an analysis of the performance data of a monitored PV system onboard a light commercial electric vehicle during parking and driving conditions in the Hannover region of Germany. The PV system's nominal power is 2180 W<sub>P</sub> with flat silicon modules on the vehicle's roof, rear, left, and right sides and other electronic components needed to charge the vehicle's high-voltage (HV) battery. The analysis indicated that after 488.92 h of operation, the modules mounted on the vehicle roof produced 133.32 kWh of electricity during parking at the best possible orientation compared to 15.4, 30.67, and 22.99 kWh for the modules mounted on the rear, left, and right sides, respectively. During the trips, after 31.99 h of operation, 6.12, 0.68, 1.08, and 1.86 kWh of electricity were produced by the modules on the roof, rear, left, and right sides, respectively. The overall system efficiency was in the 60%–65% range. The aggregated usable electricity reaching the HV battery after multiple conversion stages generated by the system at the two parking locations was 129.39 kWh. PV electricity generated at the two parking locations enabled a range extension of approximately 530 km, which is 30% of the total distance driven during the measurement period between April and July 2021.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"33 5","pages":"616-627"},"PeriodicalIF":8.0000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3897","citationCount":"0","resultStr":"{\"title\":\"Performance Analysis of an Onboard PV System on a Demonstrator Light Commercial Vehicle in Hannover, Germany\",\"authors\":\"Neel Patel,&nbsp;Evgenii Sovetkin,&nbsp;Bart Pieters,&nbsp;Karsten Bittkau,&nbsp;Kaining Ding,&nbsp;Robby Peibst,&nbsp;Hilke Fischer,&nbsp;Angèle Reinders\",\"doi\":\"10.1002/pip.3897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present an analysis of the performance data of a monitored PV system onboard a light commercial electric vehicle during parking and driving conditions in the Hannover region of Germany. The PV system's nominal power is 2180 W<sub>P</sub> with flat silicon modules on the vehicle's roof, rear, left, and right sides and other electronic components needed to charge the vehicle's high-voltage (HV) battery. The analysis indicated that after 488.92 h of operation, the modules mounted on the vehicle roof produced 133.32 kWh of electricity during parking at the best possible orientation compared to 15.4, 30.67, and 22.99 kWh for the modules mounted on the rear, left, and right sides, respectively. During the trips, after 31.99 h of operation, 6.12, 0.68, 1.08, and 1.86 kWh of electricity were produced by the modules on the roof, rear, left, and right sides, respectively. The overall system efficiency was in the 60%–65% range. The aggregated usable electricity reaching the HV battery after multiple conversion stages generated by the system at the two parking locations was 129.39 kWh. PV electricity generated at the two parking locations enabled a range extension of approximately 530 km, which is 30% of the total distance driven during the measurement period between April and July 2021.</p>\",\"PeriodicalId\":223,\"journal\":{\"name\":\"Progress in Photovoltaics\",\"volume\":\"33 5\",\"pages\":\"616-627\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3897\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Photovoltaics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/pip.3897\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Photovoltaics","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pip.3897","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本文分析了德国汉诺威地区一辆轻型商用电动车在停车和行驶条件下搭载的光伏监控系统的性能数据。该光伏系统的标称功率为2180 WP,在车顶、后部、左侧和右侧安装了平板硅模块,以及为车辆的高压(HV)电池充电所需的其他电子元件。分析表明,运行488.92 h后,安装在车顶的模块在最佳停车方向时产生的电量为133.32 kWh,而安装在后部、左侧和右侧的模块分别为15.4、30.67和22.99 kWh。在行程中,经过31.99小时的运行,车顶、后部、左侧和右侧的模块分别产生了6.12、0.68、1.08和1.86千瓦时的电力。整个系统的效率在60%-65%之间。系统在两个泊位经过多次转换后到达高压蓄电池的总可用电量为129.39 kWh。在两个停车场产生的光伏发电使行驶里程延长了约530公里,占2021年4月至7月测量期间行驶总里程的30%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Performance Analysis of an Onboard PV System on a Demonstrator Light Commercial Vehicle in Hannover, Germany

Performance Analysis of an Onboard PV System on a Demonstrator Light Commercial Vehicle in Hannover, Germany

We present an analysis of the performance data of a monitored PV system onboard a light commercial electric vehicle during parking and driving conditions in the Hannover region of Germany. The PV system's nominal power is 2180 WP with flat silicon modules on the vehicle's roof, rear, left, and right sides and other electronic components needed to charge the vehicle's high-voltage (HV) battery. The analysis indicated that after 488.92 h of operation, the modules mounted on the vehicle roof produced 133.32 kWh of electricity during parking at the best possible orientation compared to 15.4, 30.67, and 22.99 kWh for the modules mounted on the rear, left, and right sides, respectively. During the trips, after 31.99 h of operation, 6.12, 0.68, 1.08, and 1.86 kWh of electricity were produced by the modules on the roof, rear, left, and right sides, respectively. The overall system efficiency was in the 60%–65% range. The aggregated usable electricity reaching the HV battery after multiple conversion stages generated by the system at the two parking locations was 129.39 kWh. PV electricity generated at the two parking locations enabled a range extension of approximately 530 km, which is 30% of the total distance driven during the measurement period between April and July 2021.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Photovoltaics
Progress in Photovoltaics 工程技术-能源与燃料
CiteScore
18.10
自引率
7.50%
发文量
130
审稿时长
5.4 months
期刊介绍: Progress in Photovoltaics offers a prestigious forum for reporting advances in this rapidly developing technology, aiming to reach all interested professionals, researchers and energy policy-makers. The key criterion is that all papers submitted should report substantial “progress” in photovoltaics. Papers are encouraged that report substantial “progress” such as gains in independently certified solar cell efficiency, eligible for a new entry in the journal''s widely referenced Solar Cell Efficiency Tables. Examples of papers that will not be considered for publication are those that report development in materials without relation to data on cell performance, routine analysis, characterisation or modelling of cells or processing sequences, routine reports of system performance, improvements in electronic hardware design, or country programs, although invited papers may occasionally be solicited in these areas to capture accumulated “progress”.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信