Sebastian Smits, Yifeng Zhao, Paul Procel Moya, Luana Mazzarella, Olindo Isabella
{"title":"具有局部前触点的硅异质结太阳能电池","authors":"Sebastian Smits, Yifeng Zhao, Paul Procel Moya, Luana Mazzarella, Olindo Isabella","doi":"10.1002/solr.202400898","DOIUrl":null,"url":null,"abstract":"<p>Throughout the development of silicon heterojunction (SHJ) solar cells, the transparent conductive oxide has been regarded as an essential component of their front electrode, facilitating lateral charge transport of photogenerated carriers toward the front metal grid fingers. In rear junction (RJ)-SHJ solar cells, the (<i>n</i>)c-Si bulk is known to support the lateral electron transport at maximum power point injection level, provided that the contact resistance of the front contact stack is sufficiently low. This enables experimental RJ-SHJ solar cell architectures featuring a localized front carrier-selective passivating contact exclusively covering the area contacted by the metal grid. Herein, a top-down approach to the synthesis of this type of architecture is studied and its optical and electrical performance applied to different (<i>n</i>)-type contacts are investigated. Additionally, the potential of the localized contact architecture through Cu-plated RJ-SHJ solar cells is demonstrated. These solar cell demonstrators feature high short-circuit current density of 40.5 mA cm<sup>−2</sup>, without significantly compromising their open-circuit voltage or fill factor, enabling efficiencies well above 23%, a 2%<sub>abs</sub> improvement compared to their state before localization of the front contact.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"9 7","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/solr.202400898","citationCount":"0","resultStr":"{\"title\":\"Silicon Heterojunction Solar Cells Featuring Localized Front Contacts\",\"authors\":\"Sebastian Smits, Yifeng Zhao, Paul Procel Moya, Luana Mazzarella, Olindo Isabella\",\"doi\":\"10.1002/solr.202400898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Throughout the development of silicon heterojunction (SHJ) solar cells, the transparent conductive oxide has been regarded as an essential component of their front electrode, facilitating lateral charge transport of photogenerated carriers toward the front metal grid fingers. In rear junction (RJ)-SHJ solar cells, the (<i>n</i>)c-Si bulk is known to support the lateral electron transport at maximum power point injection level, provided that the contact resistance of the front contact stack is sufficiently low. This enables experimental RJ-SHJ solar cell architectures featuring a localized front carrier-selective passivating contact exclusively covering the area contacted by the metal grid. Herein, a top-down approach to the synthesis of this type of architecture is studied and its optical and electrical performance applied to different (<i>n</i>)-type contacts are investigated. Additionally, the potential of the localized contact architecture through Cu-plated RJ-SHJ solar cells is demonstrated. These solar cell demonstrators feature high short-circuit current density of 40.5 mA cm<sup>−2</sup>, without significantly compromising their open-circuit voltage or fill factor, enabling efficiencies well above 23%, a 2%<sub>abs</sub> improvement compared to their state before localization of the front contact.</p>\",\"PeriodicalId\":230,\"journal\":{\"name\":\"Solar RRL\",\"volume\":\"9 7\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/solr.202400898\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar RRL\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400898\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400898","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
摘要
在硅异质结(SHJ)太阳能电池的发展过程中,透明导电氧化物一直被认为是其前电极的重要组成部分,有助于光生载流子向前金属网格手指的横向电荷传输。在后结(RJ)-SHJ太阳能电池中,已知(n)c-Si体在最大功率点注入水平下支持横向电子传输,前提是前接触堆的接触电阻足够低。这使得实验性的RJ-SHJ太阳能电池架构具有局部的前载流子选择性钝化接触,完全覆盖金属网格接触的区域。本文研究了一种自上而下的方法来合成这种类型的结构,并研究了其应用于不同(n)型触点的光学和电学性能。此外,通过镀铜的RJ-SHJ太阳能电池,展示了局部接触结构的潜力。这些太阳能电池样品具有40.5 mA cm−2的高短路电流密度,在不显著影响开路电压或填充因子的情况下,使效率远高于23%,与前触点定位之前的状态相比,提高了2%。
Silicon Heterojunction Solar Cells Featuring Localized Front Contacts
Throughout the development of silicon heterojunction (SHJ) solar cells, the transparent conductive oxide has been regarded as an essential component of their front electrode, facilitating lateral charge transport of photogenerated carriers toward the front metal grid fingers. In rear junction (RJ)-SHJ solar cells, the (n)c-Si bulk is known to support the lateral electron transport at maximum power point injection level, provided that the contact resistance of the front contact stack is sufficiently low. This enables experimental RJ-SHJ solar cell architectures featuring a localized front carrier-selective passivating contact exclusively covering the area contacted by the metal grid. Herein, a top-down approach to the synthesis of this type of architecture is studied and its optical and electrical performance applied to different (n)-type contacts are investigated. Additionally, the potential of the localized contact architecture through Cu-plated RJ-SHJ solar cells is demonstrated. These solar cell demonstrators feature high short-circuit current density of 40.5 mA cm−2, without significantly compromising their open-circuit voltage or fill factor, enabling efficiencies well above 23%, a 2%abs improvement compared to their state before localization of the front contact.
Solar RRLPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍:
Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.