{"title":"与人类影响相关的环境梯度,而不是物种丰富度,驱动了珊瑚礁鱼类群落稳定性的区域差异","authors":"Cheng-Han Tsai, Sean R. Connolly","doi":"10.1111/ele.70001","DOIUrl":null,"url":null,"abstract":"<p>The stabilising effect of biodiversity on aggregate community properties is well-established experimentally, but its importance in naturally assembled communities at larger scales requires considering its covariation with other biotic and abiotic factors. Here, we examine the diversity–stability relationship in a 27-year coral reef fish time series at 39 reefs spanning 10° latitude on Australia's Great Barrier Reef. We find that an apparent relationship between species richness and synchrony of population fluctuations is driven by these two variables' covariation with proximity to coastal influences. Additionally, coral cover volatility destabilises fish assemblages by increasing average population variability but not synchrony, an effect mediated by changes in the intensity of density regulation in the fish community. Our findings indicate that these two environmental factors, both of which are strongly influenced by anthropogenic activity, impact community stability more than diversity does, but by distinct pathways reflecting different underlying community-dynamic processes.</p>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"28 4","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.70001","citationCount":"0","resultStr":"{\"title\":\"Environmental Gradients Linked to Human Impacts, Not Species Richness, Drive Regional Variation in Community Stability in Coral Reef Fishes\",\"authors\":\"Cheng-Han Tsai, Sean R. Connolly\",\"doi\":\"10.1111/ele.70001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The stabilising effect of biodiversity on aggregate community properties is well-established experimentally, but its importance in naturally assembled communities at larger scales requires considering its covariation with other biotic and abiotic factors. Here, we examine the diversity–stability relationship in a 27-year coral reef fish time series at 39 reefs spanning 10° latitude on Australia's Great Barrier Reef. We find that an apparent relationship between species richness and synchrony of population fluctuations is driven by these two variables' covariation with proximity to coastal influences. Additionally, coral cover volatility destabilises fish assemblages by increasing average population variability but not synchrony, an effect mediated by changes in the intensity of density regulation in the fish community. Our findings indicate that these two environmental factors, both of which are strongly influenced by anthropogenic activity, impact community stability more than diversity does, but by distinct pathways reflecting different underlying community-dynamic processes.</p>\",\"PeriodicalId\":161,\"journal\":{\"name\":\"Ecology Letters\",\"volume\":\"28 4\",\"pages\":\"\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.70001\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecology Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ele.70001\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology Letters","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ele.70001","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Environmental Gradients Linked to Human Impacts, Not Species Richness, Drive Regional Variation in Community Stability in Coral Reef Fishes
The stabilising effect of biodiversity on aggregate community properties is well-established experimentally, but its importance in naturally assembled communities at larger scales requires considering its covariation with other biotic and abiotic factors. Here, we examine the diversity–stability relationship in a 27-year coral reef fish time series at 39 reefs spanning 10° latitude on Australia's Great Barrier Reef. We find that an apparent relationship between species richness and synchrony of population fluctuations is driven by these two variables' covariation with proximity to coastal influences. Additionally, coral cover volatility destabilises fish assemblages by increasing average population variability but not synchrony, an effect mediated by changes in the intensity of density regulation in the fish community. Our findings indicate that these two environmental factors, both of which are strongly influenced by anthropogenic activity, impact community stability more than diversity does, but by distinct pathways reflecting different underlying community-dynamic processes.
期刊介绍:
Ecology Letters serves as a platform for the rapid publication of innovative research in ecology. It considers manuscripts across all taxa, biomes, and geographic regions, prioritizing papers that investigate clearly stated hypotheses. The journal publishes concise papers of high originality and general interest, contributing to new developments in ecology. Purely descriptive papers and those that only confirm or extend previous results are discouraged.