{"title":"Thermodynamic Limit on the Open Circuit Voltage of Solar Cells","authors":"Tom Markvart","doi":"10.1002/pip.3903","DOIUrl":null,"url":null,"abstract":"<p>A new thermodynamic limit for the open circuit voltage of solar cells that includes thermalization is obtained in terms of photon entropy. A simple graphical construction makes it possible to link this limit to the existing limits for single junction cells due to Trivich and Flinn, Shockley and Queisser, Würfel, and the thermodynamic Carnot-type limit for hot-carrier solar cell. At the fundamental level, this limit points to similarity between photovoltaic and thermoelectric energy conversion.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"33 5","pages":"663-665"},"PeriodicalIF":8.0000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3903","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Photovoltaics","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pip.3903","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Thermodynamic Limit on the Open Circuit Voltage of Solar Cells
A new thermodynamic limit for the open circuit voltage of solar cells that includes thermalization is obtained in terms of photon entropy. A simple graphical construction makes it possible to link this limit to the existing limits for single junction cells due to Trivich and Flinn, Shockley and Queisser, Würfel, and the thermodynamic Carnot-type limit for hot-carrier solar cell. At the fundamental level, this limit points to similarity between photovoltaic and thermoelectric energy conversion.
期刊介绍:
Progress in Photovoltaics offers a prestigious forum for reporting advances in this rapidly developing technology, aiming to reach all interested professionals, researchers and energy policy-makers.
The key criterion is that all papers submitted should report substantial “progress” in photovoltaics.
Papers are encouraged that report substantial “progress” such as gains in independently certified solar cell efficiency, eligible for a new entry in the journal''s widely referenced Solar Cell Efficiency Tables.
Examples of papers that will not be considered for publication are those that report development in materials without relation to data on cell performance, routine analysis, characterisation or modelling of cells or processing sequences, routine reports of system performance, improvements in electronic hardware design, or country programs, although invited papers may occasionally be solicited in these areas to capture accumulated “progress”.