Shamim Ahmmed, Md. Abdul Karim, Yulu He, Siliang Cao, Md. Emrul Kayesh, Kiyoto Matsuishi, Ashraful Islam
{"title":"高效倒钙钛矿太阳能电池的小分子有机空穴传输层","authors":"Shamim Ahmmed, Md. Abdul Karim, Yulu He, Siliang Cao, Md. Emrul Kayesh, Kiyoto Matsuishi, Ashraful Islam","doi":"10.1002/solr.202500017","DOIUrl":null,"url":null,"abstract":"<p>To commercialize perovskite solar cells (PSCs), it is crucial to develop cost-effective, dopant-free hole transport layers (HTLs) that can be processed at low temperatures. Herein, a dopant-free small molecular material 4,4′,4′-Tris[2-naphthyl(phenyl)amino]triphenylamine (2TNATA) was utilized in inverted PSCs as a HTL. The position of the highest occupied molecular orbital energy of 2TNATA is properly aligned with the perovskite valence band maximum. Moreover, 2TNATA can be processed at lower temperatures and shows excellent thermal stability. The lead (Pb) perovskite on 2TNATA exhibited superior crystallinity and morphology compared to the perovskite on poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) and poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA). Furthermore, the carrier kinetics in 2TNATA-based PSCs was superior to PTAA and PEDOT:PSS-based PSCs. Consequently, an outstanding power conversion efficiency (PCE) of 20.58% was observed from the 2TNATA HTL-based 0.09 cm<sup>2</sup> PSCs, while PTAA and PEDOT:PSS HTLs-based 0.09 cm<sup>2</sup> PSCs showed PCE of 19.36% and 14.35%, respectively. Moreover, the 2TNATA HTL-based 1.0 cm<sup>2</sup> PSCs demonstrated an impressive PCE of 20.04%. The results indicate that 2TNATA might be a promising HTL for the inexpensive and efficient inverted PSCs.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"9 7","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/solr.202500017","citationCount":"0","resultStr":"{\"title\":\"Small Molecular Organic Hole Transport Layer for Efficient Inverted Perovskite Solar Cells\",\"authors\":\"Shamim Ahmmed, Md. Abdul Karim, Yulu He, Siliang Cao, Md. Emrul Kayesh, Kiyoto Matsuishi, Ashraful Islam\",\"doi\":\"10.1002/solr.202500017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To commercialize perovskite solar cells (PSCs), it is crucial to develop cost-effective, dopant-free hole transport layers (HTLs) that can be processed at low temperatures. Herein, a dopant-free small molecular material 4,4′,4′-Tris[2-naphthyl(phenyl)amino]triphenylamine (2TNATA) was utilized in inverted PSCs as a HTL. The position of the highest occupied molecular orbital energy of 2TNATA is properly aligned with the perovskite valence band maximum. Moreover, 2TNATA can be processed at lower temperatures and shows excellent thermal stability. The lead (Pb) perovskite on 2TNATA exhibited superior crystallinity and morphology compared to the perovskite on poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) and poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA). Furthermore, the carrier kinetics in 2TNATA-based PSCs was superior to PTAA and PEDOT:PSS-based PSCs. Consequently, an outstanding power conversion efficiency (PCE) of 20.58% was observed from the 2TNATA HTL-based 0.09 cm<sup>2</sup> PSCs, while PTAA and PEDOT:PSS HTLs-based 0.09 cm<sup>2</sup> PSCs showed PCE of 19.36% and 14.35%, respectively. Moreover, the 2TNATA HTL-based 1.0 cm<sup>2</sup> PSCs demonstrated an impressive PCE of 20.04%. The results indicate that 2TNATA might be a promising HTL for the inexpensive and efficient inverted PSCs.</p>\",\"PeriodicalId\":230,\"journal\":{\"name\":\"Solar RRL\",\"volume\":\"9 7\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/solr.202500017\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar RRL\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/solr.202500017\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202500017","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Small Molecular Organic Hole Transport Layer for Efficient Inverted Perovskite Solar Cells
To commercialize perovskite solar cells (PSCs), it is crucial to develop cost-effective, dopant-free hole transport layers (HTLs) that can be processed at low temperatures. Herein, a dopant-free small molecular material 4,4′,4′-Tris[2-naphthyl(phenyl)amino]triphenylamine (2TNATA) was utilized in inverted PSCs as a HTL. The position of the highest occupied molecular orbital energy of 2TNATA is properly aligned with the perovskite valence band maximum. Moreover, 2TNATA can be processed at lower temperatures and shows excellent thermal stability. The lead (Pb) perovskite on 2TNATA exhibited superior crystallinity and morphology compared to the perovskite on poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) and poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA). Furthermore, the carrier kinetics in 2TNATA-based PSCs was superior to PTAA and PEDOT:PSS-based PSCs. Consequently, an outstanding power conversion efficiency (PCE) of 20.58% was observed from the 2TNATA HTL-based 0.09 cm2 PSCs, while PTAA and PEDOT:PSS HTLs-based 0.09 cm2 PSCs showed PCE of 19.36% and 14.35%, respectively. Moreover, the 2TNATA HTL-based 1.0 cm2 PSCs demonstrated an impressive PCE of 20.04%. The results indicate that 2TNATA might be a promising HTL for the inexpensive and efficient inverted PSCs.
Solar RRLPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍:
Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.