Jun Wu, Zhiqin Ying, Xin Li, Meili Zhang, Xuchao Guo, Linhui Liu, Yihan Sun, Haofan Ma, Yunyun Yu, Ziyu He, Yuheng Zeng, Xi Yang, Jichun Ye
{"title":"Surface Sulfuration of Atomic Layer Deposited Snox for Enhanced Performance of n–i–P Perovskite Solar Cells","authors":"Jun Wu, Zhiqin Ying, Xin Li, Meili Zhang, Xuchao Guo, Linhui Liu, Yihan Sun, Haofan Ma, Yunyun Yu, Ziyu He, Yuheng Zeng, Xi Yang, Jichun Ye","doi":"10.1002/solr.202400879","DOIUrl":null,"url":null,"abstract":"<p>Perovskite/silicon tandem solar cells hold great promise for achieving high power conversion efficiencies (PCEs). However, n–<i>i</i>–p tandem devices generally underperform compared to p–<i>i</i>–n configurations, largely due to difficulties in depositing high-quality, conformal electron-transport layers (ETLs) on rough, pyramid-structured silicon surfaces. Atomic layer deposited (ALD)-SnO<sub><i>x</i></sub> is well suited as an ETL for tandem devices due to its ability to uniformly coat textured surfaces, but its high density of defects significantly limits efficiency compared to conventional solution-processed SnO<sub><i>x</i></sub>. In this study, an ultrathin evaporated PbS layer is introduced to passivate surface defects in ALD-SnO<sub><i>x</i></sub>. PbS effectively addresses interfacial defects at the SnO<sub><i>x</i></sub>/perovskite interface, such as oxygen vacancies and uncoordinated Pb<sup>2+</sup>. Moreover, PbS improves energy-level alignment and lattice matching at the interface, enhancing device performance. With this bridging effect of PbS, a wide-bandgap (1.68 eV) n–<i>i</i>–p single-junction perovskite solar cell achieved a PCE of 20.39% and an open-circuit voltage (<i>V</i><sub>OC</sub>) of 1.22 V, compared to a control device with a PCE of 17.42% and a <i>V</i><sub>OC</sub> of 1.16 V.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"9 7","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400879","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Surface Sulfuration of Atomic Layer Deposited Snox for Enhanced Performance of n–i–P Perovskite Solar Cells
Perovskite/silicon tandem solar cells hold great promise for achieving high power conversion efficiencies (PCEs). However, n–i–p tandem devices generally underperform compared to p–i–n configurations, largely due to difficulties in depositing high-quality, conformal electron-transport layers (ETLs) on rough, pyramid-structured silicon surfaces. Atomic layer deposited (ALD)-SnOx is well suited as an ETL for tandem devices due to its ability to uniformly coat textured surfaces, but its high density of defects significantly limits efficiency compared to conventional solution-processed SnOx. In this study, an ultrathin evaporated PbS layer is introduced to passivate surface defects in ALD-SnOx. PbS effectively addresses interfacial defects at the SnOx/perovskite interface, such as oxygen vacancies and uncoordinated Pb2+. Moreover, PbS improves energy-level alignment and lattice matching at the interface, enhancing device performance. With this bridging effect of PbS, a wide-bandgap (1.68 eV) n–i–p single-junction perovskite solar cell achieved a PCE of 20.39% and an open-circuit voltage (VOC) of 1.22 V, compared to a control device with a PCE of 17.42% and a VOC of 1.16 V.
Solar RRLPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍:
Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.