Juliana Balluffi-Fry, Yasmine N. Majchrzak, Michael J. L. Peers, Emily K. Studd, Allyson K. Menzies, Liam G. Horne, Emily Monk, Nicole Humeniuk, Thomas S. Jung, Dennis L. Murray, Stan Boutin
{"title":"Why does animal home range size decrease with population density?","authors":"Juliana Balluffi-Fry, Yasmine N. Majchrzak, Michael J. L. Peers, Emily K. Studd, Allyson K. Menzies, Liam G. Horne, Emily Monk, Nicole Humeniuk, Thomas S. Jung, Dennis L. Murray, Stan Boutin","doi":"10.1002/ecy.70054","DOIUrl":null,"url":null,"abstract":"<p>Spatial confinement to a home range is theorized to be a more energetically efficient method of acquiring resources than random searching due to spatial memory. Intraspecific studies that have compared home range size at different population densities have found that home ranges shrink as population density increases. This negative trend could be due to increased conspecific competition via population density increase or due to correlations between resource density and population density. We use the 10-year population cycle of snowshoe hares (<i>Lepus americanus</i>) and individual-level food-add experiments as a case study to assess whether the mechanism of the relationship between home range size and population density is related to competition from increased conspecific density or confounds between population density and resource density. Over six winters (1 December–31 March) and a 50-fold change in population density, we estimated weekly home range sizes (<i>n</i> = 464; 90% minimum convex polygons) of 88 radio-collared hares, of which 26 were food-supplemented. We found a negative relationship between home range size and population density in controls; home ranges decreased by 2.5 ha as hare density increased from 0.24 to 1.2 hare/ha. Food-supplemented hares showed a more negative response to population density than controls (4.0 ± 0.56 ha decrease per 1 hare/ha increase). Our results suggest that the negative trend between home range size and population density is not due to confounds between population and resource density. Likely, there is a trade-off between resource acquisition and some other density-driven constraint when foraging at high densities, which we suggest is a reduction in resource sharing to minimize competition and maintain resource familiarity at high densities.</p>","PeriodicalId":11484,"journal":{"name":"Ecology","volume":"106 4","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecy.70054","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecy.70054","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Why does animal home range size decrease with population density?
Spatial confinement to a home range is theorized to be a more energetically efficient method of acquiring resources than random searching due to spatial memory. Intraspecific studies that have compared home range size at different population densities have found that home ranges shrink as population density increases. This negative trend could be due to increased conspecific competition via population density increase or due to correlations between resource density and population density. We use the 10-year population cycle of snowshoe hares (Lepus americanus) and individual-level food-add experiments as a case study to assess whether the mechanism of the relationship between home range size and population density is related to competition from increased conspecific density or confounds between population density and resource density. Over six winters (1 December–31 March) and a 50-fold change in population density, we estimated weekly home range sizes (n = 464; 90% minimum convex polygons) of 88 radio-collared hares, of which 26 were food-supplemented. We found a negative relationship between home range size and population density in controls; home ranges decreased by 2.5 ha as hare density increased from 0.24 to 1.2 hare/ha. Food-supplemented hares showed a more negative response to population density than controls (4.0 ± 0.56 ha decrease per 1 hare/ha increase). Our results suggest that the negative trend between home range size and population density is not due to confounds between population and resource density. Likely, there is a trade-off between resource acquisition and some other density-driven constraint when foraging at high densities, which we suggest is a reduction in resource sharing to minimize competition and maintain resource familiarity at high densities.
期刊介绍:
Ecology publishes articles that report on the basic elements of ecological research. Emphasis is placed on concise, clear articles documenting important ecological phenomena. The journal publishes a broad array of research that includes a rapidly expanding envelope of subject matter, techniques, approaches, and concepts: paleoecology through present-day phenomena; evolutionary, population, physiological, community, and ecosystem ecology, as well as biogeochemistry; inclusive of descriptive, comparative, experimental, mathematical, statistical, and interdisciplinary approaches.