从甜椒种子中提取的功能化新型碳点用于可持续绿色艾多沙班定量研究

IF 4.3 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Rasha Th. El-Eryan, Mona S. Elshahed, Dalia Mohamed, Azza A. Ashour, Heba T. Elbalkiny
{"title":"从甜椒种子中提取的功能化新型碳点用于可持续绿色艾多沙班定量研究","authors":"Rasha Th. El-Eryan,&nbsp;Mona S. Elshahed,&nbsp;Dalia Mohamed,&nbsp;Azza A. Ashour,&nbsp;Heba T. Elbalkiny","doi":"10.1186/s13065-025-01427-z","DOIUrl":null,"url":null,"abstract":"<div><p>Global warming and the developed worldwide awareness have persuaded efforts to minimize the generated hazardous wastes. As a result, “green” chemical procedures are being gradually included in science for sustainable development. This concept has been extended and inspired chemists to fabricate novel green carbon dots (CDs) from natural plants. Herein, we represent novel CDs synthesized by recycling seeds obtained from bell pepper as fluorescent probe for the determination of Edoxaban tosylate hydrate (EDO) a non-fluorescent drug; we exploit the advantage of the inner filter effect between the absorption peak of the drug and the emission peak of the CDs. This overlap resulted in quenching the fluorescence of CDs by increasing the concentration of EDO within the range 0.80–20.00 µg/mL with a limit of detection 0.23 and 0.22 µg/mL and a limit of quantitation 0.69 and 0.72 µg/mL for Microwave CDs and Plate CDs, respectively, at λ<sub>ex</sub>/λ<sub>em</sub> 310/409 nm. Two facile preparation techniques for the CDs were used, the microwave-assisted method and the thermal decomposition method, using a single-step approach. The fabricated CDs were characterized using various techniques, including UV-vis, fluorescence and Fourier transform infrared spectroscopies, energy-dispersive X-ray, high-resolution transmission electron microscope, X-ray Diffaction, X-Ray photoelectron spectroscopy and zeta potential. The performance of the synthesized fluorescent probe for the determination of EDO was evaluated according to ICH guidelines. The accomplished results, together with the simplicity, sensitivity, and low cost of the developed probe, recommended its appropriateness for the routine quality control assay of EDO pharmaceutical formulation, as good % recovery was obtained upon the investigation of the marketed tablets with 99.77% and 98.79% recoveries for microwave CDs and plate CDs, respectively. The method’s greenness was evaluated using three integral matrices, the Blue Applicability Grade Index, the Complementary Green Analytical Procedure Index and Analytical Eco-Scale.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":"19 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-025-01427-z","citationCount":"0","resultStr":"{\"title\":\"Functionalized novel carbon dots from bell pepper seeds for sustainable green Edoxaban quantification\",\"authors\":\"Rasha Th. El-Eryan,&nbsp;Mona S. Elshahed,&nbsp;Dalia Mohamed,&nbsp;Azza A. Ashour,&nbsp;Heba T. Elbalkiny\",\"doi\":\"10.1186/s13065-025-01427-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Global warming and the developed worldwide awareness have persuaded efforts to minimize the generated hazardous wastes. As a result, “green” chemical procedures are being gradually included in science for sustainable development. This concept has been extended and inspired chemists to fabricate novel green carbon dots (CDs) from natural plants. Herein, we represent novel CDs synthesized by recycling seeds obtained from bell pepper as fluorescent probe for the determination of Edoxaban tosylate hydrate (EDO) a non-fluorescent drug; we exploit the advantage of the inner filter effect between the absorption peak of the drug and the emission peak of the CDs. This overlap resulted in quenching the fluorescence of CDs by increasing the concentration of EDO within the range 0.80–20.00 µg/mL with a limit of detection 0.23 and 0.22 µg/mL and a limit of quantitation 0.69 and 0.72 µg/mL for Microwave CDs and Plate CDs, respectively, at λ<sub>ex</sub>/λ<sub>em</sub> 310/409 nm. Two facile preparation techniques for the CDs were used, the microwave-assisted method and the thermal decomposition method, using a single-step approach. The fabricated CDs were characterized using various techniques, including UV-vis, fluorescence and Fourier transform infrared spectroscopies, energy-dispersive X-ray, high-resolution transmission electron microscope, X-ray Diffaction, X-Ray photoelectron spectroscopy and zeta potential. The performance of the synthesized fluorescent probe for the determination of EDO was evaluated according to ICH guidelines. The accomplished results, together with the simplicity, sensitivity, and low cost of the developed probe, recommended its appropriateness for the routine quality control assay of EDO pharmaceutical formulation, as good % recovery was obtained upon the investigation of the marketed tablets with 99.77% and 98.79% recoveries for microwave CDs and plate CDs, respectively. The method’s greenness was evaluated using three integral matrices, the Blue Applicability Grade Index, the Complementary Green Analytical Procedure Index and Analytical Eco-Scale.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":496,\"journal\":{\"name\":\"BMC Chemistry\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-025-01427-z\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13065-025-01427-z\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13065-025-01427-z","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

全球变暖和全球意识的发展促使人们努力减少产生的有害废物。因此,“绿色”化学程序正逐渐被纳入可持续发展科学。这一概念得到了扩展,并激发了化学家们从天然植物中制造新型绿色碳点(cd)。本文提出了一种利用甜椒种子合成的新型CDs作为荧光探针,用于检测非荧光药物水合戊酸乙多沙班(EDO);我们利用了药物吸收峰与CDs发射峰之间的内过滤效应。在波长为λex/λem 310/409 nm时,微波CDs和平板CDs的检测限分别为0.23和0.22µg/mL,定量限分别为0.69和0.72µg/mL。采用微波辅助法和热分解法两种简单的制备方法,采用一步法制备CDs。利用紫外可见光谱、荧光光谱和傅里叶变换红外光谱、能量色散x射线、高分辨率透射电子显微镜、x射线衍射、x射线光电子能谱和zeta电位等技术对制备的CDs进行了表征。根据ICH指南对合成的荧光探针检测EDO的性能进行评价。结果表明,该探针操作简便、灵敏度高、成本低等特点,适用于EDO制剂的常规质量控制分析,对市售片剂微波cd和平板cd的回收率分别为99.77%和98.79%,回收率较高。采用“蓝色适用性等级指数”、“互补绿色分析程序指数”和“分析生态尺度”三个积分矩阵对该方法的绿色度进行评价。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Functionalized novel carbon dots from bell pepper seeds for sustainable green Edoxaban quantification

Global warming and the developed worldwide awareness have persuaded efforts to minimize the generated hazardous wastes. As a result, “green” chemical procedures are being gradually included in science for sustainable development. This concept has been extended and inspired chemists to fabricate novel green carbon dots (CDs) from natural plants. Herein, we represent novel CDs synthesized by recycling seeds obtained from bell pepper as fluorescent probe for the determination of Edoxaban tosylate hydrate (EDO) a non-fluorescent drug; we exploit the advantage of the inner filter effect between the absorption peak of the drug and the emission peak of the CDs. This overlap resulted in quenching the fluorescence of CDs by increasing the concentration of EDO within the range 0.80–20.00 µg/mL with a limit of detection 0.23 and 0.22 µg/mL and a limit of quantitation 0.69 and 0.72 µg/mL for Microwave CDs and Plate CDs, respectively, at λexem 310/409 nm. Two facile preparation techniques for the CDs were used, the microwave-assisted method and the thermal decomposition method, using a single-step approach. The fabricated CDs were characterized using various techniques, including UV-vis, fluorescence and Fourier transform infrared spectroscopies, energy-dispersive X-ray, high-resolution transmission electron microscope, X-ray Diffaction, X-Ray photoelectron spectroscopy and zeta potential. The performance of the synthesized fluorescent probe for the determination of EDO was evaluated according to ICH guidelines. The accomplished results, together with the simplicity, sensitivity, and low cost of the developed probe, recommended its appropriateness for the routine quality control assay of EDO pharmaceutical formulation, as good % recovery was obtained upon the investigation of the marketed tablets with 99.77% and 98.79% recoveries for microwave CDs and plate CDs, respectively. The method’s greenness was evaluated using three integral matrices, the Blue Applicability Grade Index, the Complementary Green Analytical Procedure Index and Analytical Eco-Scale.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Chemistry
BMC Chemistry Chemistry-General Chemistry
CiteScore
5.30
自引率
2.20%
发文量
92
审稿时长
27 weeks
期刊介绍: BMC Chemistry, formerly known as Chemistry Central Journal, is now part of the BMC series journals family. Chemistry Central Journal has served the chemistry community as a trusted open access resource for more than 10 years – and we are delighted to announce the next step on its journey. In January 2019 the journal has been renamed BMC Chemistry and now strengthens the BMC series footprint in the physical sciences by publishing quality articles and by pushing the boundaries of open chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信