基于STEREO/COR1观测的三维全球日冕密度改进层析重建

IF 2.7 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Tongjiang Wang, C. Nick Arge, Shaela I. Jones
{"title":"基于STEREO/COR1观测的三维全球日冕密度改进层析重建","authors":"Tongjiang Wang,&nbsp;C. Nick Arge,&nbsp;Shaela I. Jones","doi":"10.1007/s11207-025-02454-8","DOIUrl":null,"url":null,"abstract":"<div><p>Tomography is a powerful technique for recovering the three-dimensional (3D) density structure of the global solar corona. In this work, we present an improved tomography method by introducing radial weighting in the regularization term. Radial weighting provides balanced smoothing of density values across different heights, helping to recover finer structures at lower heights while also stabilizing the solution and preventing oscillatory artifacts at higher altitudes. We apply this technique to reconstruct the 3D electron density of Carrington Rotation (CR) 2098 using two weeks of polarized brightness (pB) observations from the inner coronagraph (COR1) on board spacecraft-B of the twin Solar Terrestrial Relations Observatory (STEREO), where the radial weighting function is taken as the inverse intensity background, calculated by averaging all the pB images used. Comparisons between density distributions at various heights from the tomography and magnetohydrodynamics (MHD) simulations show good agreement. We find that radial weighting not only effectively corrects the oversmoothing effect near the inner boundary in reconstructions using second-order smoothing but also significantly improves reconstruction quality when using zero-order smoothing. Additionally, comparing reconstructions for CR 2091 from single-satellite data with that from multiviewpoint data suggests that coronal evolution and dynamics may significantly impact on the reconstructed density structures. This improved tomography method has been used to create a database of 3D densities for CRs 2052 to 2154, based on STEREO/COR1-B data, covering the period from 08 January 2007 to 17 September 2014.</p></div>","PeriodicalId":777,"journal":{"name":"Solar Physics","volume":"300 4","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Tomographic Reconstruction of 3D Global Coronal Density from STEREO/COR1 Observations\",\"authors\":\"Tongjiang Wang,&nbsp;C. Nick Arge,&nbsp;Shaela I. Jones\",\"doi\":\"10.1007/s11207-025-02454-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Tomography is a powerful technique for recovering the three-dimensional (3D) density structure of the global solar corona. In this work, we present an improved tomography method by introducing radial weighting in the regularization term. Radial weighting provides balanced smoothing of density values across different heights, helping to recover finer structures at lower heights while also stabilizing the solution and preventing oscillatory artifacts at higher altitudes. We apply this technique to reconstruct the 3D electron density of Carrington Rotation (CR) 2098 using two weeks of polarized brightness (pB) observations from the inner coronagraph (COR1) on board spacecraft-B of the twin Solar Terrestrial Relations Observatory (STEREO), where the radial weighting function is taken as the inverse intensity background, calculated by averaging all the pB images used. Comparisons between density distributions at various heights from the tomography and magnetohydrodynamics (MHD) simulations show good agreement. We find that radial weighting not only effectively corrects the oversmoothing effect near the inner boundary in reconstructions using second-order smoothing but also significantly improves reconstruction quality when using zero-order smoothing. Additionally, comparing reconstructions for CR 2091 from single-satellite data with that from multiviewpoint data suggests that coronal evolution and dynamics may significantly impact on the reconstructed density structures. This improved tomography method has been used to create a database of 3D densities for CRs 2052 to 2154, based on STEREO/COR1-B data, covering the period from 08 January 2007 to 17 September 2014.</p></div>\",\"PeriodicalId\":777,\"journal\":{\"name\":\"Solar Physics\",\"volume\":\"300 4\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11207-025-02454-8\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11207-025-02454-8","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

层析成像是恢复全球日冕的三维(3D)密度结构的一种强大技术。在这项工作中,我们提出了一种改进的层析成像方法,在正则化项中引入径向加权。径向加权提供了不同高度密度值的平衡平滑,有助于在较低高度恢复更精细的结构,同时也稳定了溶液,防止了较高高度的振荡现象。利用双日地关系天文台(STEREO)航天器- b上的内日冕仪(COR1)两周的偏振亮度(pB)观测数据,我们将该技术应用于重建Carrington Rotation (CR) 2098的三维电子密度,其中径向加权函数作为逆强度背景,通过平均所有使用的pB图像来计算。层析成像和磁流体动力学(MHD)模拟结果表明,不同高度的密度分布具有良好的一致性。研究发现,径向加权不仅能有效地校正二阶平滑重建时内边界附近的过平滑效应,而且能显著提高零阶平滑重建时的重建质量。此外,比较单星数据与多视点数据重建的cr2091,发现日冕演化和动态可能对重建的密度结构有显著影响。基于STEREO/COR1-B数据,采用改进的层析成像方法创建了CRs 2052至2154的三维密度数据库,覆盖时间为2007年1月8日至2014年9月17日。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Improved Tomographic Reconstruction of 3D Global Coronal Density from STEREO/COR1 Observations

Improved Tomographic Reconstruction of 3D Global Coronal Density from STEREO/COR1 Observations

Tomography is a powerful technique for recovering the three-dimensional (3D) density structure of the global solar corona. In this work, we present an improved tomography method by introducing radial weighting in the regularization term. Radial weighting provides balanced smoothing of density values across different heights, helping to recover finer structures at lower heights while also stabilizing the solution and preventing oscillatory artifacts at higher altitudes. We apply this technique to reconstruct the 3D electron density of Carrington Rotation (CR) 2098 using two weeks of polarized brightness (pB) observations from the inner coronagraph (COR1) on board spacecraft-B of the twin Solar Terrestrial Relations Observatory (STEREO), where the radial weighting function is taken as the inverse intensity background, calculated by averaging all the pB images used. Comparisons between density distributions at various heights from the tomography and magnetohydrodynamics (MHD) simulations show good agreement. We find that radial weighting not only effectively corrects the oversmoothing effect near the inner boundary in reconstructions using second-order smoothing but also significantly improves reconstruction quality when using zero-order smoothing. Additionally, comparing reconstructions for CR 2091 from single-satellite data with that from multiviewpoint data suggests that coronal evolution and dynamics may significantly impact on the reconstructed density structures. This improved tomography method has been used to create a database of 3D densities for CRs 2052 to 2154, based on STEREO/COR1-B data, covering the period from 08 January 2007 to 17 September 2014.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar Physics
Solar Physics 地学天文-天文与天体物理
CiteScore
5.10
自引率
17.90%
发文量
146
审稿时长
1 months
期刊介绍: Solar Physics was founded in 1967 and is the principal journal for the publication of the results of fundamental research on the Sun. The journal treats all aspects of solar physics, ranging from the internal structure of the Sun and its evolution to the outer corona and solar wind in interplanetary space. Papers on solar-terrestrial physics and on stellar research are also published when their results have a direct bearing on our understanding of the Sun.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信