设计基于全栅极拱形隧道场效应晶体管的无电容 DRAM

IF 5.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Seung Ji Bae, Sang Ho Lee, Jin Park, Min Seok Kim, Jeong Woo Hong, Won Suk Koh, Gang San Yun, Jaewon Jang, Jin-Hyuk Bae, In Man Kang
{"title":"设计基于全栅极拱形隧道场效应晶体管的无电容 DRAM","authors":"Seung Ji Bae,&nbsp;Sang Ho Lee,&nbsp;Jin Park,&nbsp;Min Seok Kim,&nbsp;Jeong Woo Hong,&nbsp;Won Suk Koh,&nbsp;Gang San Yun,&nbsp;Jaewon Jang,&nbsp;Jin-Hyuk Bae,&nbsp;In Man Kang","doi":"10.1186/s11671-025-04233-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we designed and analyzed a single-transistor dynamic random-access memory (1 T-DRAM) based on an arch-shaped gate-all-around tunnel field-effect transistor (GAA ARCH-TFET), featuring an Si/SiGe heterostructure, for high-density memory applications. Unlike conventional 1 T-DRAM, which relies on the electric-field-driven movement of charge carriers through a channel for the read operation, the GAA ARCH-TFET 1 T-DRAM utilizes band-to-band tunneling. The GAA structure improves scalability, making it suitable for high-density memory applications. This capacitorless GAA ARCH-TFET 1 T-DRAM cell demonstrates both superior performance and low energy consumption. The arch-shaped design expands the tunneling area, while the Si/SiGe heterostructure forms a quantum well that further enhances memory performance. The effects of key parameters, including source height, channel height, and germanium composition, on device behavior are examined. Simulation results reveal that the GAA ARCH-TFET 1 T-DRAM achieves a high current ratio of read “1” to read “0” (10<sup>8</sup>) and a retention time exceeding 1 s at 358 K. These characteristics suggest that the proposed device holds potential as a DRAM replacement in various applications.</p></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"20 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-025-04233-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Design of a gate-all-around arch-shaped tunnel-field-effect-transistor-based capacitorless DRAM\",\"authors\":\"Seung Ji Bae,&nbsp;Sang Ho Lee,&nbsp;Jin Park,&nbsp;Min Seok Kim,&nbsp;Jeong Woo Hong,&nbsp;Won Suk Koh,&nbsp;Gang San Yun,&nbsp;Jaewon Jang,&nbsp;Jin-Hyuk Bae,&nbsp;In Man Kang\",\"doi\":\"10.1186/s11671-025-04233-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, we designed and analyzed a single-transistor dynamic random-access memory (1 T-DRAM) based on an arch-shaped gate-all-around tunnel field-effect transistor (GAA ARCH-TFET), featuring an Si/SiGe heterostructure, for high-density memory applications. Unlike conventional 1 T-DRAM, which relies on the electric-field-driven movement of charge carriers through a channel for the read operation, the GAA ARCH-TFET 1 T-DRAM utilizes band-to-band tunneling. The GAA structure improves scalability, making it suitable for high-density memory applications. This capacitorless GAA ARCH-TFET 1 T-DRAM cell demonstrates both superior performance and low energy consumption. The arch-shaped design expands the tunneling area, while the Si/SiGe heterostructure forms a quantum well that further enhances memory performance. The effects of key parameters, including source height, channel height, and germanium composition, on device behavior are examined. Simulation results reveal that the GAA ARCH-TFET 1 T-DRAM achieves a high current ratio of read “1” to read “0” (10<sup>8</sup>) and a retention time exceeding 1 s at 358 K. These characteristics suggest that the proposed device holds potential as a DRAM replacement in various applications.</p></div>\",\"PeriodicalId\":51136,\"journal\":{\"name\":\"Nanoscale Research Letters\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1186/s11671-025-04233-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Research Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s11671-025-04233-7\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-025-04233-7","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们设计并分析了一种基于拱形门全能隧道场效应晶体管(GAA ARCH-TFET)的单晶体管动态随机存取存储器(1 T-DRAM),具有Si/SiGe异质结构,用于高密度存储应用。与传统的T-DRAM不同,传统的T-DRAM依赖于电场驱动的电荷载流子通过通道进行读取操作,而GAA ARCH-TFET 1 T-DRAM利用带对带隧道。GAA结构提高了可伸缩性,使其适合高密度内存应用。这种无电容的GAA ARCH-TFET 1 T-DRAM电池具有优异的性能和低能耗。拱形设计扩大了隧道面积,而Si/SiGe异质结构形成了量子阱,进一步提高了存储性能。关键参数的影响,包括源高度,通道高度,锗成分,对器件的行为进行了检查。仿真结果表明,GAA ARCH-TFET - 1 T-DRAM在358 K时具有较高的读“1”与读“0”的电流比(108)和超过1 s的保持时间。这些特征表明所提出的器件在各种应用中具有作为DRAM替代品的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of a gate-all-around arch-shaped tunnel-field-effect-transistor-based capacitorless DRAM

In this study, we designed and analyzed a single-transistor dynamic random-access memory (1 T-DRAM) based on an arch-shaped gate-all-around tunnel field-effect transistor (GAA ARCH-TFET), featuring an Si/SiGe heterostructure, for high-density memory applications. Unlike conventional 1 T-DRAM, which relies on the electric-field-driven movement of charge carriers through a channel for the read operation, the GAA ARCH-TFET 1 T-DRAM utilizes band-to-band tunneling. The GAA structure improves scalability, making it suitable for high-density memory applications. This capacitorless GAA ARCH-TFET 1 T-DRAM cell demonstrates both superior performance and low energy consumption. The arch-shaped design expands the tunneling area, while the Si/SiGe heterostructure forms a quantum well that further enhances memory performance. The effects of key parameters, including source height, channel height, and germanium composition, on device behavior are examined. Simulation results reveal that the GAA ARCH-TFET 1 T-DRAM achieves a high current ratio of read “1” to read “0” (108) and a retention time exceeding 1 s at 358 K. These characteristics suggest that the proposed device holds potential as a DRAM replacement in various applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale Research Letters
Nanoscale Research Letters 工程技术-材料科学:综合
CiteScore
11.30
自引率
0.00%
发文量
110
审稿时长
48 days
期刊介绍: Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信