David van Impelen, Dominik Perius, Lola González-García and Tobias Kraus
{"title":"形状的重要性:印刷电子产品中可回收导电浆料中的薄片和球体","authors":"David van Impelen, Dominik Perius, Lola González-García and Tobias Kraus","doi":"10.1039/D4SU00721B","DOIUrl":null,"url":null,"abstract":"<p >Silver microflakes and -spheres are common fillers for electrically conductive screen-printing pastes. Here, we report on the effects of filler shapes and sizes on conductivity, sintering, and recyclability. We printed pastes based on flakes and spheres, treated them at 110 °C to 300 °C, and evaluated the electrical conductivity of the resulting layers. The electrical conductivity of the layers treated at 110 °C was dominated by particle–particle contact resistances; flakes yielded layers that were five times more conductive than sphere-based layers due to differences in the particle–particle contact area. Increasing temperature led to a reduction of the resistivity of all layers through sintering. At 300 °C, prints based on spheres were 4 times more conductive than those from flakes. Tomography of the sintered structures showed that the difference was caused by a lower tortuosity factor for spheres. In a final study, we showed that silver flakes and spheres could be recycled after sintering and reused for a new generation of prints without losing electrical performance. The more porous structure of sintered flakes allowed for higher recycling yields compared to spheres. At 140 °C, 91.6% of the flakes and 69.7% of the spheres were recovered as reusable dispersions.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 4","pages":" 1800-1806"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/su/d4su00721b?page=search","citationCount":"0","resultStr":"{\"title\":\"The importance of shape: flakes and spheres in recyclable conductive pastes for printed electronics†\",\"authors\":\"David van Impelen, Dominik Perius, Lola González-García and Tobias Kraus\",\"doi\":\"10.1039/D4SU00721B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Silver microflakes and -spheres are common fillers for electrically conductive screen-printing pastes. Here, we report on the effects of filler shapes and sizes on conductivity, sintering, and recyclability. We printed pastes based on flakes and spheres, treated them at 110 °C to 300 °C, and evaluated the electrical conductivity of the resulting layers. The electrical conductivity of the layers treated at 110 °C was dominated by particle–particle contact resistances; flakes yielded layers that were five times more conductive than sphere-based layers due to differences in the particle–particle contact area. Increasing temperature led to a reduction of the resistivity of all layers through sintering. At 300 °C, prints based on spheres were 4 times more conductive than those from flakes. Tomography of the sintered structures showed that the difference was caused by a lower tortuosity factor for spheres. In a final study, we showed that silver flakes and spheres could be recycled after sintering and reused for a new generation of prints without losing electrical performance. The more porous structure of sintered flakes allowed for higher recycling yields compared to spheres. At 140 °C, 91.6% of the flakes and 69.7% of the spheres were recovered as reusable dispersions.</p>\",\"PeriodicalId\":74745,\"journal\":{\"name\":\"RSC sustainability\",\"volume\":\" 4\",\"pages\":\" 1800-1806\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/su/d4su00721b?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/su/d4su00721b\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC sustainability","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/su/d4su00721b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The importance of shape: flakes and spheres in recyclable conductive pastes for printed electronics†
Silver microflakes and -spheres are common fillers for electrically conductive screen-printing pastes. Here, we report on the effects of filler shapes and sizes on conductivity, sintering, and recyclability. We printed pastes based on flakes and spheres, treated them at 110 °C to 300 °C, and evaluated the electrical conductivity of the resulting layers. The electrical conductivity of the layers treated at 110 °C was dominated by particle–particle contact resistances; flakes yielded layers that were five times more conductive than sphere-based layers due to differences in the particle–particle contact area. Increasing temperature led to a reduction of the resistivity of all layers through sintering. At 300 °C, prints based on spheres were 4 times more conductive than those from flakes. Tomography of the sintered structures showed that the difference was caused by a lower tortuosity factor for spheres. In a final study, we showed that silver flakes and spheres could be recycled after sintering and reused for a new generation of prints without losing electrical performance. The more porous structure of sintered flakes allowed for higher recycling yields compared to spheres. At 140 °C, 91.6% of the flakes and 69.7% of the spheres were recovered as reusable dispersions.