通过短链脂肪酸代谢的无监督聚类动态PET成像表征原发性脑胶质瘤的基因型

IF 4.6 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Marianna Inglese;Tommaso Boccato;Matteo Ferrante;Shah Islam;Matthew Williams;Adam D. Waldman;Kevin O’Neill;Eric O. Aboagye;Nicola Toschi
{"title":"通过短链脂肪酸代谢的无监督聚类动态PET成像表征原发性脑胶质瘤的基因型","authors":"Marianna Inglese;Tommaso Boccato;Matteo Ferrante;Shah Islam;Matthew Williams;Adam D. Waldman;Kevin O’Neill;Eric O. Aboagye;Nicola Toschi","doi":"10.1109/TRPMS.2024.3514087","DOIUrl":null,"url":null,"abstract":"The impact of genetics on the diagnosis, treatment, and survival outcomes for patients with brain glioma is significant. At present, isocitrate dehydrogenase (IDH) mutation, the key biomarker in brain glioma with considerably better-survival rates, lacks a distinct radiologic signature. In this study, we targeted the glioma specific mechanism involving short chain fatty acid (SCFA) transcellular flux (TF) for energy production using 18F-fluoropivalate (FPIA) PET tracer and used this information to characterize the genetic profile of 10 patients with brain gliomas (5 IDH-mutant and 5 wild-type). We discerned four unique SCFA metabolic profiles by applying k-means clustering to an average of <inline-formula> <tex-math>$25202~(\\pm ~14337$ </tex-math></inline-formula>) time activity curves (TACs) extracted from dynamic 18F-FPIA PET scans. Using deep learning (DL), the TACs from the first two clusters accurately differentiated between mutant and wild-type gliomas (<inline-formula> <tex-math>$96.75\\pm 3.24$ </tex-math></inline-formula>% accuracy, <inline-formula> <tex-math>$0.96\\pm 0.04$ </tex-math></inline-formula> AUC). The third cluster, the one with the lowest-FPIA SUV, showed the worst performance (<inline-formula> <tex-math>$23.67\\pm 16.83$ </tex-math></inline-formula>% accuracy, <inline-formula> <tex-math>$0.31\\pm 0.17$ </tex-math></inline-formula> AUC), suggesting that only a subset of SCFA-TF profiles define the genetic status of the tumor. Finally, disregarding the heterogeneity of SCFA-TF significantly reduced our model’s effectiveness, with accuracies dropping to <inline-formula> <tex-math>$67.40\\pm 22.87$ </tex-math></inline-formula>% and <inline-formula> <tex-math>$70.42\\pm 16.25$ </tex-math></inline-formula>% when tested using static SUV PET data and the full range of FPIA TACs, respectively.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"9 4","pages":"460-467"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genotype Characterization in Primary Brain Gliomas via Unsupervised Clustering of Dynamic PET Imaging of Short-Chain Fatty Acid Metabolism\",\"authors\":\"Marianna Inglese;Tommaso Boccato;Matteo Ferrante;Shah Islam;Matthew Williams;Adam D. Waldman;Kevin O’Neill;Eric O. Aboagye;Nicola Toschi\",\"doi\":\"10.1109/TRPMS.2024.3514087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The impact of genetics on the diagnosis, treatment, and survival outcomes for patients with brain glioma is significant. At present, isocitrate dehydrogenase (IDH) mutation, the key biomarker in brain glioma with considerably better-survival rates, lacks a distinct radiologic signature. In this study, we targeted the glioma specific mechanism involving short chain fatty acid (SCFA) transcellular flux (TF) for energy production using 18F-fluoropivalate (FPIA) PET tracer and used this information to characterize the genetic profile of 10 patients with brain gliomas (5 IDH-mutant and 5 wild-type). We discerned four unique SCFA metabolic profiles by applying k-means clustering to an average of <inline-formula> <tex-math>$25202~(\\\\pm ~14337$ </tex-math></inline-formula>) time activity curves (TACs) extracted from dynamic 18F-FPIA PET scans. Using deep learning (DL), the TACs from the first two clusters accurately differentiated between mutant and wild-type gliomas (<inline-formula> <tex-math>$96.75\\\\pm 3.24$ </tex-math></inline-formula>% accuracy, <inline-formula> <tex-math>$0.96\\\\pm 0.04$ </tex-math></inline-formula> AUC). The third cluster, the one with the lowest-FPIA SUV, showed the worst performance (<inline-formula> <tex-math>$23.67\\\\pm 16.83$ </tex-math></inline-formula>% accuracy, <inline-formula> <tex-math>$0.31\\\\pm 0.17$ </tex-math></inline-formula> AUC), suggesting that only a subset of SCFA-TF profiles define the genetic status of the tumor. Finally, disregarding the heterogeneity of SCFA-TF significantly reduced our model’s effectiveness, with accuracies dropping to <inline-formula> <tex-math>$67.40\\\\pm 22.87$ </tex-math></inline-formula>% and <inline-formula> <tex-math>$70.42\\\\pm 16.25$ </tex-math></inline-formula>% when tested using static SUV PET data and the full range of FPIA TACs, respectively.\",\"PeriodicalId\":46807,\"journal\":{\"name\":\"IEEE Transactions on Radiation and Plasma Medical Sciences\",\"volume\":\"9 4\",\"pages\":\"460-467\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Radiation and Plasma Medical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10787037/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radiation and Plasma Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10787037/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

遗传学对脑胶质瘤患者的诊断、治疗和生存结果的影响是显著的。目前,异柠檬酸脱氢酶(IDH)突变是脑胶质瘤的关键生物标志物,具有相当高的生存率,但缺乏明确的放射学特征。在这项研究中,我们使用18f -氟吡戊酸酯(FPIA) PET示踪剂,针对短链脂肪酸(SCFA)跨细胞通量(TF)产生能量的胶质瘤特异性机制,并利用该信息表征了10例脑胶质瘤患者(5例idh突变型和5例野生型)的遗传谱。通过对从动态18F-FPIA PET扫描中提取的平均$25202~(\pm ~14337$)时间活性曲线(TACs)应用k-means聚类,我们识别出了四个独特的SCFA代谢谱。使用深度学习(DL),来自前两个簇的tac准确地区分了突变型和野生型胶质瘤(准确率为96.75\pm 3.24$ %, AUC为0.96\pm 0.04$)。fpia SUV最低的第三组表现最差(准确率为23.67\pm 16.83$ %, AUC为0.31\pm 0.17$),表明只有SCFA-TF谱的一个子集定义了肿瘤的遗传状态。最后,忽略SCFA-TF的异质性显著降低了我们模型的有效性,当使用静态SUV PET数据和全范围FPIA TACs进行测试时,准确率分别降至67.40\pm 22.87$ %和70.42\pm 16.25$ %。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genotype Characterization in Primary Brain Gliomas via Unsupervised Clustering of Dynamic PET Imaging of Short-Chain Fatty Acid Metabolism
The impact of genetics on the diagnosis, treatment, and survival outcomes for patients with brain glioma is significant. At present, isocitrate dehydrogenase (IDH) mutation, the key biomarker in brain glioma with considerably better-survival rates, lacks a distinct radiologic signature. In this study, we targeted the glioma specific mechanism involving short chain fatty acid (SCFA) transcellular flux (TF) for energy production using 18F-fluoropivalate (FPIA) PET tracer and used this information to characterize the genetic profile of 10 patients with brain gliomas (5 IDH-mutant and 5 wild-type). We discerned four unique SCFA metabolic profiles by applying k-means clustering to an average of $25202~(\pm ~14337$ ) time activity curves (TACs) extracted from dynamic 18F-FPIA PET scans. Using deep learning (DL), the TACs from the first two clusters accurately differentiated between mutant and wild-type gliomas ( $96.75\pm 3.24$ % accuracy, $0.96\pm 0.04$ AUC). The third cluster, the one with the lowest-FPIA SUV, showed the worst performance ( $23.67\pm 16.83$ % accuracy, $0.31\pm 0.17$ AUC), suggesting that only a subset of SCFA-TF profiles define the genetic status of the tumor. Finally, disregarding the heterogeneity of SCFA-TF significantly reduced our model’s effectiveness, with accuracies dropping to $67.40\pm 22.87$ % and $70.42\pm 16.25$ % when tested using static SUV PET data and the full range of FPIA TACs, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Radiation and Plasma Medical Sciences
IEEE Transactions on Radiation and Plasma Medical Sciences RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
8.00
自引率
18.20%
发文量
109
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信