D3Net:一种分布驱动的放疗剂量预测深度网络

IF 4.6 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Lu Wen;Jianghong Xiao;Zhenghao Feng;Xiao Chen;Jiliu Zhou;Xingchen Peng;Yan Wang
{"title":"D3Net:一种分布驱动的放疗剂量预测深度网络","authors":"Lu Wen;Jianghong Xiao;Zhenghao Feng;Xiao Chen;Jiliu Zhou;Xingchen Peng;Yan Wang","doi":"10.1109/TRPMS.2025.3525732","DOIUrl":null,"url":null,"abstract":"Radiotherapy is a primary treatment for cancers to apply sufficient radiation dose to the planning target volume (PTV) while minimizing dose hazards to the organs at risk (OARs). Recently, convolutional neural network (CNN) has automated radiotherapy plan making by directly predicting the dose distribution maps. However, existing CNN-based methods ignore two critical dose distribution characteristics, i.e., 1) the spatial distribution of different dose values and 2) dose differences in the interior and exterior PTV, resulting in suboptimal predictions. In this article, we propose a distribution-driven deep network, named D3Net, to achieve automatic dose prediction by simultaneously considering its spatial distribution and dose differences. Concretely, D3Net is constructed by a traditional CNN framework embedded with a transformer encoder to extract both local and global dosimetric information. To investigate the spatial distribution of different dose values, we present an innovative discrete multidose constraint to measure multiple dose values in the predicted dose map with discrete dose masks. Besides, we design a PTV-guided triplet constraint to utilize the explicit geometry of PTV to refine dose feature representations in the interior and exterior PTV, thus facilitating the dose differences. The proposed method is validated on the two clinical datasets, achieving <inline-formula> <tex-math>$| {{\\Delta }{D}}_{98} |$ </tex-math></inline-formula> values of 1.87 Gy for rectum (REC) cancer and 1.08 Gy for cervical cancer. The experimental results surpass those of other state-of-the-art (SOTA) methods, verifying that the predicted dose distribution of our method is more closed to the clinically approved one.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"9 4","pages":"497-507"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10824860","citationCount":"0","resultStr":"{\"title\":\"D3Net: A Distribution-Driven Deep Network for Radiotherapy Dose Prediction\",\"authors\":\"Lu Wen;Jianghong Xiao;Zhenghao Feng;Xiao Chen;Jiliu Zhou;Xingchen Peng;Yan Wang\",\"doi\":\"10.1109/TRPMS.2025.3525732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Radiotherapy is a primary treatment for cancers to apply sufficient radiation dose to the planning target volume (PTV) while minimizing dose hazards to the organs at risk (OARs). Recently, convolutional neural network (CNN) has automated radiotherapy plan making by directly predicting the dose distribution maps. However, existing CNN-based methods ignore two critical dose distribution characteristics, i.e., 1) the spatial distribution of different dose values and 2) dose differences in the interior and exterior PTV, resulting in suboptimal predictions. In this article, we propose a distribution-driven deep network, named D3Net, to achieve automatic dose prediction by simultaneously considering its spatial distribution and dose differences. Concretely, D3Net is constructed by a traditional CNN framework embedded with a transformer encoder to extract both local and global dosimetric information. To investigate the spatial distribution of different dose values, we present an innovative discrete multidose constraint to measure multiple dose values in the predicted dose map with discrete dose masks. Besides, we design a PTV-guided triplet constraint to utilize the explicit geometry of PTV to refine dose feature representations in the interior and exterior PTV, thus facilitating the dose differences. The proposed method is validated on the two clinical datasets, achieving <inline-formula> <tex-math>$| {{\\\\Delta }{D}}_{98} |$ </tex-math></inline-formula> values of 1.87 Gy for rectum (REC) cancer and 1.08 Gy for cervical cancer. The experimental results surpass those of other state-of-the-art (SOTA) methods, verifying that the predicted dose distribution of our method is more closed to the clinically approved one.\",\"PeriodicalId\":46807,\"journal\":{\"name\":\"IEEE Transactions on Radiation and Plasma Medical Sciences\",\"volume\":\"9 4\",\"pages\":\"497-507\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10824860\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Radiation and Plasma Medical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10824860/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radiation and Plasma Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10824860/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

放射治疗是治疗癌症的主要方法,目的是在计划靶体积(PTV)上施加足够的辐射剂量,同时尽量减少对危险器官(OARs)的剂量危害。近年来,卷积神经网络(CNN)通过直接预测剂量分布图实现了放疗计划的自动制定。然而,现有的基于cnn的方法忽略了两个关键的剂量分布特征,即1)不同剂量值的空间分布和2)内外PTV的剂量差异,导致预测不理想。在本文中,我们提出了一个分布驱动的深度网络,命名为D3Net,同时考虑其空间分布和剂量差异来实现自动剂量预测。具体而言,D3Net是由嵌入变压器编码器的传统CNN框架构建的,以提取局部和全局剂量学信息。为了研究不同剂量值的空间分布,我们提出了一种创新的离散多剂量约束,用离散剂量掩模测量预测剂量图中的多个剂量值。此外,我们设计了一个PTV引导的三重约束,利用PTV的显式几何形状来细化PTV内外的剂量特征表示,从而方便了剂量差异。在两个临床数据集上验证了所提出的方法,直肠(REC)癌的$| {{\Delta}{D}}_{98} |$值为1.87 Gy,宫颈癌为1.08 Gy。实验结果超过了其他先进的SOTA方法,验证了我们的方法预测剂量分布更接近临床批准的剂量分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
D3Net: A Distribution-Driven Deep Network for Radiotherapy Dose Prediction
Radiotherapy is a primary treatment for cancers to apply sufficient radiation dose to the planning target volume (PTV) while minimizing dose hazards to the organs at risk (OARs). Recently, convolutional neural network (CNN) has automated radiotherapy plan making by directly predicting the dose distribution maps. However, existing CNN-based methods ignore two critical dose distribution characteristics, i.e., 1) the spatial distribution of different dose values and 2) dose differences in the interior and exterior PTV, resulting in suboptimal predictions. In this article, we propose a distribution-driven deep network, named D3Net, to achieve automatic dose prediction by simultaneously considering its spatial distribution and dose differences. Concretely, D3Net is constructed by a traditional CNN framework embedded with a transformer encoder to extract both local and global dosimetric information. To investigate the spatial distribution of different dose values, we present an innovative discrete multidose constraint to measure multiple dose values in the predicted dose map with discrete dose masks. Besides, we design a PTV-guided triplet constraint to utilize the explicit geometry of PTV to refine dose feature representations in the interior and exterior PTV, thus facilitating the dose differences. The proposed method is validated on the two clinical datasets, achieving $| {{\Delta }{D}}_{98} |$ values of 1.87 Gy for rectum (REC) cancer and 1.08 Gy for cervical cancer. The experimental results surpass those of other state-of-the-art (SOTA) methods, verifying that the predicted dose distribution of our method is more closed to the clinically approved one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Radiation and Plasma Medical Sciences
IEEE Transactions on Radiation and Plasma Medical Sciences RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
8.00
自引率
18.20%
发文量
109
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信