构造具有最优代数免疫、高非线性和高代数度的平衡2p变量旋转对称布尔函数

IF 0.7 3区 数学 Q2 MATHEMATICS
Jiao Du , Xiaoting Chen , Yongxia Mao , Qiang Gao , Tianyin Wang
{"title":"构造具有最优代数免疫、高非线性和高代数度的平衡2p变量旋转对称布尔函数","authors":"Jiao Du ,&nbsp;Xiaoting Chen ,&nbsp;Yongxia Mao ,&nbsp;Qiang Gao ,&nbsp;Tianyin Wang","doi":"10.1016/j.disc.2025.114513","DOIUrl":null,"url":null,"abstract":"<div><div>How to design cryptographic Boolean functions is a challenge work in the design of stream and block ciphers. Cryptographic criteria of Boolean functions are connected with some known cryptanalytic attacks. To resist these known attacks, it is important to search Boolean functions with some properties, including balancedness, optimal algebraic immunity, high algebraic degree, good nonlinearity, high correlation immunity, etc. Rotation symmetric Boolean functions (RSBFs) can have these properties simultaneously. In this paper, we propose a new class of balanced 2<em>p</em>-variable RSBFs based on the compositions of an integer, where <em>p</em> is an odd prime. It is found that the functions of this class have optimal algebraic immunity, and their nonlinearity reaches <span><math><msup><mrow><mn>2</mn></mrow><mrow><mn>2</mn><mi>p</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>−</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mn>2</mn><mi>p</mi><mo>−</mo><mn>1</mn></mrow></mtd></mtr><mtr><mtd><mi>p</mi></mtd></mtr></mtable><mo>)</mo></mrow><mo>+</mo><mn>2</mn><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>3</mn></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msubsup><mrow><mo>(</mo><mi>i</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>i</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></mtd></mtr><mtr><mtd><mrow><mi>p</mi><mo>−</mo><mi>i</mi><mo>−</mo><mn>2</mn></mrow></mtd></mtr></mtable><mo>)</mo></mrow><mo>+</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>η</mi></mrow></msub><mo>+</mo><mn>1</mn></math></span> (where <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>η</mi></mrow></msub><mo>=</mo><mfrac><mrow><mi>p</mi><mo>−</mo><mn>2</mn><mo>−</mo><mrow><mo>(</mo><mi>p</mi><mspace></mspace><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> and <em>p</em> is an odd prime), which is higher than the previously constructed balanced even-variable RSBFs with optimal algebraic immunity. At the same time, the algebraic degree of the constructed functions are studied, and the results show that they can be optimal under certain conditions.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 8","pages":"Article 114513"},"PeriodicalIF":0.7000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constructing balanced 2p-variable rotation symmetric Boolean functions with optimal algebraic immunity, high nonlinearity and high algebraic degree\",\"authors\":\"Jiao Du ,&nbsp;Xiaoting Chen ,&nbsp;Yongxia Mao ,&nbsp;Qiang Gao ,&nbsp;Tianyin Wang\",\"doi\":\"10.1016/j.disc.2025.114513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>How to design cryptographic Boolean functions is a challenge work in the design of stream and block ciphers. Cryptographic criteria of Boolean functions are connected with some known cryptanalytic attacks. To resist these known attacks, it is important to search Boolean functions with some properties, including balancedness, optimal algebraic immunity, high algebraic degree, good nonlinearity, high correlation immunity, etc. Rotation symmetric Boolean functions (RSBFs) can have these properties simultaneously. In this paper, we propose a new class of balanced 2<em>p</em>-variable RSBFs based on the compositions of an integer, where <em>p</em> is an odd prime. It is found that the functions of this class have optimal algebraic immunity, and their nonlinearity reaches <span><math><msup><mrow><mn>2</mn></mrow><mrow><mn>2</mn><mi>p</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>−</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mn>2</mn><mi>p</mi><mo>−</mo><mn>1</mn></mrow></mtd></mtr><mtr><mtd><mi>p</mi></mtd></mtr></mtable><mo>)</mo></mrow><mo>+</mo><mn>2</mn><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>3</mn></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msubsup><mrow><mo>(</mo><mi>i</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>i</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></mtd></mtr><mtr><mtd><mrow><mi>p</mi><mo>−</mo><mi>i</mi><mo>−</mo><mn>2</mn></mrow></mtd></mtr></mtable><mo>)</mo></mrow><mo>+</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>η</mi></mrow></msub><mo>+</mo><mn>1</mn></math></span> (where <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>η</mi></mrow></msub><mo>=</mo><mfrac><mrow><mi>p</mi><mo>−</mo><mn>2</mn><mo>−</mo><mrow><mo>(</mo><mi>p</mi><mspace></mspace><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> and <em>p</em> is an odd prime), which is higher than the previously constructed balanced even-variable RSBFs with optimal algebraic immunity. At the same time, the algebraic degree of the constructed functions are studied, and the results show that they can be optimal under certain conditions.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 8\",\"pages\":\"Article 114513\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25001219\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25001219","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

如何设计密码布尔函数是流密码和分组密码设计中的一个难点。布尔函数的密码准则与一些已知的密码分析攻击有关。为了抵抗这些已知的攻击,重要的是搜索具有平衡性、最优代数免疫、高代数度、良好非线性、高相关免疫等性质的布尔函数。旋转对称布尔函数(rsbf)可以同时具有这些属性。在本文中,我们提出了一类新的基于整数组合的平衡2p变量rsbf,其中p是奇素数。结果表明,该类函数具有最优的代数抗扰性,其非线性达到22p−1−(2p−1p)+2∑i=3p−2(i−1)(i−2)(p−2p−i−2)+Nη+1(其中Nη=p−2−(pmod4)2且p为奇素数),优于以往构造的具有最优代数抗扰性的平衡偶变量rsbf。同时,对构造函数的代数度进行了研究,结果表明在一定条件下构造函数是最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constructing balanced 2p-variable rotation symmetric Boolean functions with optimal algebraic immunity, high nonlinearity and high algebraic degree
How to design cryptographic Boolean functions is a challenge work in the design of stream and block ciphers. Cryptographic criteria of Boolean functions are connected with some known cryptanalytic attacks. To resist these known attacks, it is important to search Boolean functions with some properties, including balancedness, optimal algebraic immunity, high algebraic degree, good nonlinearity, high correlation immunity, etc. Rotation symmetric Boolean functions (RSBFs) can have these properties simultaneously. In this paper, we propose a new class of balanced 2p-variable RSBFs based on the compositions of an integer, where p is an odd prime. It is found that the functions of this class have optimal algebraic immunity, and their nonlinearity reaches 22p1(2p1p)+2i=3p2(i1)(i2)(p2pi2)+Nη+1 (where Nη=p2(pmod4)2 and p is an odd prime), which is higher than the previously constructed balanced even-variable RSBFs with optimal algebraic immunity. At the same time, the algebraic degree of the constructed functions are studied, and the results show that they can be optimal under certain conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信