Kadomtsev-Petviashvili3和Kadomtsev-Petviashvili4方程扩展组合的非局部Alice-Bob解

IF 6.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Yang-Kai Du , Zheng-Yi Ma , Li Cheng
{"title":"Kadomtsev-Petviashvili3和Kadomtsev-Petviashvili4方程扩展组合的非局部Alice-Bob解","authors":"Yang-Kai Du ,&nbsp;Zheng-Yi Ma ,&nbsp;Li Cheng","doi":"10.1016/j.aej.2025.03.050","DOIUrl":null,"url":null,"abstract":"<div><div>The paper first introduces the Alice–Bob system for the extended combination of the Kadomtsev–Petviashvili3 and the Kadomtsev–Petviashvili4 equations (cKP3-4), which is an integrable model. Based on the extended Bäcklund transformation, this system exists bilinear form after introducing an auxiliary variable. In order to construct the special explicit solution, that is, to satisfy the principle of the <span><math><mrow><msubsup><mrow><mover><mrow><mi>P</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>s</mi></mrow><mrow><mi>x</mi></mrow></msubsup><msubsup><mrow><mover><mrow><mi>P</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>s</mi></mrow><mrow><mi>y</mi></mrow></msubsup><msub><mrow><mover><mrow><mi>T</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>d</mi></mrow></msub><mi>A</mi><mo>=</mo><mi>B</mi></mrow></math></span> symmetry, we present one universal auxiliary function. Thereafter, this function can deduce various types of symmetry breaking solutions, which contain different soliton structures.</div></div>","PeriodicalId":7484,"journal":{"name":"alexandria engineering journal","volume":"124 ","pages":"Pages 273-284"},"PeriodicalIF":6.2000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The nonlocal Alice–Bob solutions for an extended combination of the Kadomtsev–Petviashvili3 and the Kadomtsev–Petviashvili4 equations\",\"authors\":\"Yang-Kai Du ,&nbsp;Zheng-Yi Ma ,&nbsp;Li Cheng\",\"doi\":\"10.1016/j.aej.2025.03.050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The paper first introduces the Alice–Bob system for the extended combination of the Kadomtsev–Petviashvili3 and the Kadomtsev–Petviashvili4 equations (cKP3-4), which is an integrable model. Based on the extended Bäcklund transformation, this system exists bilinear form after introducing an auxiliary variable. In order to construct the special explicit solution, that is, to satisfy the principle of the <span><math><mrow><msubsup><mrow><mover><mrow><mi>P</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>s</mi></mrow><mrow><mi>x</mi></mrow></msubsup><msubsup><mrow><mover><mrow><mi>P</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>s</mi></mrow><mrow><mi>y</mi></mrow></msubsup><msub><mrow><mover><mrow><mi>T</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>d</mi></mrow></msub><mi>A</mi><mo>=</mo><mi>B</mi></mrow></math></span> symmetry, we present one universal auxiliary function. Thereafter, this function can deduce various types of symmetry breaking solutions, which contain different soliton structures.</div></div>\",\"PeriodicalId\":7484,\"journal\":{\"name\":\"alexandria engineering journal\",\"volume\":\"124 \",\"pages\":\"Pages 273-284\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"alexandria engineering journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1110016825003588\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"alexandria engineering journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110016825003588","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文首先介绍了Kadomtsev-Petviashvili3和Kadomtsev-Petviashvili4方程扩展组合的Alice-Bob系统(cKP3-4),它是一个可积模型。基于扩展Bäcklund变换,在引入辅助变量后,该系统存在双线性形式。为了构造特殊的显式解,即满足P & sxP & syT & dA=B对称的原理,我们给出了一个泛辅助函数。此后,该函数可以推导出包含不同孤子结构的各种类型的对称破缺解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The nonlocal Alice–Bob solutions for an extended combination of the Kadomtsev–Petviashvili3 and the Kadomtsev–Petviashvili4 equations
The paper first introduces the Alice–Bob system for the extended combination of the Kadomtsev–Petviashvili3 and the Kadomtsev–Petviashvili4 equations (cKP3-4), which is an integrable model. Based on the extended Bäcklund transformation, this system exists bilinear form after introducing an auxiliary variable. In order to construct the special explicit solution, that is, to satisfy the principle of the PˆsxPˆsyTˆdA=B symmetry, we present one universal auxiliary function. Thereafter, this function can deduce various types of symmetry breaking solutions, which contain different soliton structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
alexandria engineering journal
alexandria engineering journal Engineering-General Engineering
CiteScore
11.20
自引率
4.40%
发文量
1015
审稿时长
43 days
期刊介绍: Alexandria Engineering Journal is an international journal devoted to publishing high quality papers in the field of engineering and applied science. Alexandria Engineering Journal is cited in the Engineering Information Services (EIS) and the Chemical Abstracts (CA). The papers published in Alexandria Engineering Journal are grouped into five sections, according to the following classification: • Mechanical, Production, Marine and Textile Engineering • Electrical Engineering, Computer Science and Nuclear Engineering • Civil and Architecture Engineering • Chemical Engineering and Applied Sciences • Environmental Engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信