{"title":"Kadomtsev-Petviashvili3和Kadomtsev-Petviashvili4方程扩展组合的非局部Alice-Bob解","authors":"Yang-Kai Du , Zheng-Yi Ma , Li Cheng","doi":"10.1016/j.aej.2025.03.050","DOIUrl":null,"url":null,"abstract":"<div><div>The paper first introduces the Alice–Bob system for the extended combination of the Kadomtsev–Petviashvili3 and the Kadomtsev–Petviashvili4 equations (cKP3-4), which is an integrable model. Based on the extended Bäcklund transformation, this system exists bilinear form after introducing an auxiliary variable. In order to construct the special explicit solution, that is, to satisfy the principle of the <span><math><mrow><msubsup><mrow><mover><mrow><mi>P</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>s</mi></mrow><mrow><mi>x</mi></mrow></msubsup><msubsup><mrow><mover><mrow><mi>P</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>s</mi></mrow><mrow><mi>y</mi></mrow></msubsup><msub><mrow><mover><mrow><mi>T</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>d</mi></mrow></msub><mi>A</mi><mo>=</mo><mi>B</mi></mrow></math></span> symmetry, we present one universal auxiliary function. Thereafter, this function can deduce various types of symmetry breaking solutions, which contain different soliton structures.</div></div>","PeriodicalId":7484,"journal":{"name":"alexandria engineering journal","volume":"124 ","pages":"Pages 273-284"},"PeriodicalIF":6.2000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The nonlocal Alice–Bob solutions for an extended combination of the Kadomtsev–Petviashvili3 and the Kadomtsev–Petviashvili4 equations\",\"authors\":\"Yang-Kai Du , Zheng-Yi Ma , Li Cheng\",\"doi\":\"10.1016/j.aej.2025.03.050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The paper first introduces the Alice–Bob system for the extended combination of the Kadomtsev–Petviashvili3 and the Kadomtsev–Petviashvili4 equations (cKP3-4), which is an integrable model. Based on the extended Bäcklund transformation, this system exists bilinear form after introducing an auxiliary variable. In order to construct the special explicit solution, that is, to satisfy the principle of the <span><math><mrow><msubsup><mrow><mover><mrow><mi>P</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>s</mi></mrow><mrow><mi>x</mi></mrow></msubsup><msubsup><mrow><mover><mrow><mi>P</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>s</mi></mrow><mrow><mi>y</mi></mrow></msubsup><msub><mrow><mover><mrow><mi>T</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>d</mi></mrow></msub><mi>A</mi><mo>=</mo><mi>B</mi></mrow></math></span> symmetry, we present one universal auxiliary function. Thereafter, this function can deduce various types of symmetry breaking solutions, which contain different soliton structures.</div></div>\",\"PeriodicalId\":7484,\"journal\":{\"name\":\"alexandria engineering journal\",\"volume\":\"124 \",\"pages\":\"Pages 273-284\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"alexandria engineering journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1110016825003588\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"alexandria engineering journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110016825003588","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
The nonlocal Alice–Bob solutions for an extended combination of the Kadomtsev–Petviashvili3 and the Kadomtsev–Petviashvili4 equations
The paper first introduces the Alice–Bob system for the extended combination of the Kadomtsev–Petviashvili3 and the Kadomtsev–Petviashvili4 equations (cKP3-4), which is an integrable model. Based on the extended Bäcklund transformation, this system exists bilinear form after introducing an auxiliary variable. In order to construct the special explicit solution, that is, to satisfy the principle of the symmetry, we present one universal auxiliary function. Thereafter, this function can deduce various types of symmetry breaking solutions, which contain different soliton structures.
期刊介绍:
Alexandria Engineering Journal is an international journal devoted to publishing high quality papers in the field of engineering and applied science. Alexandria Engineering Journal is cited in the Engineering Information Services (EIS) and the Chemical Abstracts (CA). The papers published in Alexandria Engineering Journal are grouped into five sections, according to the following classification:
• Mechanical, Production, Marine and Textile Engineering
• Electrical Engineering, Computer Science and Nuclear Engineering
• Civil and Architecture Engineering
• Chemical Engineering and Applied Sciences
• Environmental Engineering