关于圆弧色完全(平衡二部)有向图的适当哈密性和适当(偶)环性

IF 0.7 3区 数学 Q2 MATHEMATICS
Mengyu Duan , Zhiwei Guo , Binlong Li , Shenggui Zhang
{"title":"关于圆弧色完全(平衡二部)有向图的适当哈密性和适当(偶)环性","authors":"Mengyu Duan ,&nbsp;Zhiwei Guo ,&nbsp;Binlong Li ,&nbsp;Shenggui Zhang","doi":"10.1016/j.disc.2025.114507","DOIUrl":null,"url":null,"abstract":"<div><div>A subdigraph of an arc-colored digraph is called properly colored if its every pair of consecutive arcs have distinct colors. We call an arc-colored digraph <em>D</em> properly hamiltonian if it contains a properly colored Hamilton cycle, and properly (even) pancyclic if it contains a properly colored cycle of length <em>k</em> for every (even) <em>k</em> with <span><math><mn>2</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mo>|</mo><mi>V</mi><mo>(</mo><mi>D</mi><mo>)</mo><mo>|</mo></math></span>. In this paper, we first obtain some color number conditions for the existence of properly colored Hamilton cycles of arc-colored complete (balanced bipartite) digraphs, and further prove that the these conditions can still guarantee the (even) pancyclicity of arc-colored complete (balanced bipartite) digraphs.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 8","pages":"Article 114507"},"PeriodicalIF":0.7000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On proper hamiltonicity and proper (even) pancyclicity of arc-colored complete (balanced bipartite) digraphs\",\"authors\":\"Mengyu Duan ,&nbsp;Zhiwei Guo ,&nbsp;Binlong Li ,&nbsp;Shenggui Zhang\",\"doi\":\"10.1016/j.disc.2025.114507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A subdigraph of an arc-colored digraph is called properly colored if its every pair of consecutive arcs have distinct colors. We call an arc-colored digraph <em>D</em> properly hamiltonian if it contains a properly colored Hamilton cycle, and properly (even) pancyclic if it contains a properly colored cycle of length <em>k</em> for every (even) <em>k</em> with <span><math><mn>2</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mo>|</mo><mi>V</mi><mo>(</mo><mi>D</mi><mo>)</mo><mo>|</mo></math></span>. In this paper, we first obtain some color number conditions for the existence of properly colored Hamilton cycles of arc-colored complete (balanced bipartite) digraphs, and further prove that the these conditions can still guarantee the (even) pancyclicity of arc-colored complete (balanced bipartite) digraphs.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 8\",\"pages\":\"Article 114507\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25001153\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25001153","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

如果一个有向图的每一对连续的弧都有不同的颜色,那么这个有向图的子图就被称为有向图。我们称一个弧色有向图D为适当的哈密顿图,如果它包含一个适当的有色哈密顿环,如果它包含一个长度为k的适当的(偶)环,对于2≤k≤|V(D)|,我们称它为适当的(偶)环。本文首先得到了弧色完全(平衡二部)有向图的适当色Hamilton环存在的一些色数条件,并进一步证明了这些条件仍能保证弧色完全(平衡二部)有向图的(偶)泛环性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On proper hamiltonicity and proper (even) pancyclicity of arc-colored complete (balanced bipartite) digraphs
A subdigraph of an arc-colored digraph is called properly colored if its every pair of consecutive arcs have distinct colors. We call an arc-colored digraph D properly hamiltonian if it contains a properly colored Hamilton cycle, and properly (even) pancyclic if it contains a properly colored cycle of length k for every (even) k with 2k|V(D)|. In this paper, we first obtain some color number conditions for the existence of properly colored Hamilton cycles of arc-colored complete (balanced bipartite) digraphs, and further prove that the these conditions can still guarantee the (even) pancyclicity of arc-colored complete (balanced bipartite) digraphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信