Buket Ucar Franke , Kai Kummer , Stefan Rose-John , Stefan F. Lichtenthaler , Michaela Kress
{"title":"bace1介导的IL-6信号调节:对小鼠神经活动和突触可塑性的影响","authors":"Buket Ucar Franke , Kai Kummer , Stefan Rose-John , Stefan F. Lichtenthaler , Michaela Kress","doi":"10.1016/j.cyto.2025.156925","DOIUrl":null,"url":null,"abstract":"<div><div>The pleiotropic cytokine IL-6 regulates numerous processes in the body, including neuronal functions. IL-6 either binds to membrane-bound receptor (mIL-6R) and triggers signaling via heteromerization with the signal transducer gp130 (classical signaling), or binds to its soluble form (sIL-6R) to act on cells that do not express mIL-6R (trans-signaling). The ß-secretase BACE1 can cleave gp130 as well as IL-6R and we hypothesized that BACE1 may alter neuron activity and synaptic transmission via modulation of IL-6 signaling.</div><div>We used multielectrode array (MEA) recordings to monitor electrical activity of neuronal networks in acute cerebellar slices as well as long-term potentiation (LTP) induced by high-frequency stimulation in the hippocampus and to assess how exposure to IL-6 affects these processes. A pharmacological approach was applied to elucidate the contribution of trans-signaling involving BACE1.</div><div>Spontaneous neuronal activity in cerebellar slices significantly decreased upon perfusion with IL-6 but not LIF and recovered during wash out. BACE1 inhibitors verubecestat or AZD3839 abolished the inhibitory effects of IL-6. Furthermore, IL-6 and LIF reversibly inhibited LTP in hippocampal slices, and in contrast to cerebellar neurons, BACE1 inhibitors verubecestat or AZD3839 did not abolish the inhibitory effect of IL-6 on LTP. Interestingly, a dramatic rebound effect on excitatory postsynaptic potentials was observed with BACE1 inhibitor AZD3839 but not verubecestat during wash out.</div><div>Our results support relevant and differential roles of IL-6, LIF and BACE1 in pathways modulating neuronal discharge activity in the cerebellum and the synaptic plasticity in the hippocampus, and a possible involvement of this interaction in deficits of memory and learning.</div></div>","PeriodicalId":297,"journal":{"name":"Cytokine","volume":"190 ","pages":"Article 156925"},"PeriodicalIF":3.7000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shedding new light on BACE1-mediated modulation of IL-6 signaling: Implications for neural activity and synaptic plasticity in mice\",\"authors\":\"Buket Ucar Franke , Kai Kummer , Stefan Rose-John , Stefan F. Lichtenthaler , Michaela Kress\",\"doi\":\"10.1016/j.cyto.2025.156925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The pleiotropic cytokine IL-6 regulates numerous processes in the body, including neuronal functions. IL-6 either binds to membrane-bound receptor (mIL-6R) and triggers signaling via heteromerization with the signal transducer gp130 (classical signaling), or binds to its soluble form (sIL-6R) to act on cells that do not express mIL-6R (trans-signaling). The ß-secretase BACE1 can cleave gp130 as well as IL-6R and we hypothesized that BACE1 may alter neuron activity and synaptic transmission via modulation of IL-6 signaling.</div><div>We used multielectrode array (MEA) recordings to monitor electrical activity of neuronal networks in acute cerebellar slices as well as long-term potentiation (LTP) induced by high-frequency stimulation in the hippocampus and to assess how exposure to IL-6 affects these processes. A pharmacological approach was applied to elucidate the contribution of trans-signaling involving BACE1.</div><div>Spontaneous neuronal activity in cerebellar slices significantly decreased upon perfusion with IL-6 but not LIF and recovered during wash out. BACE1 inhibitors verubecestat or AZD3839 abolished the inhibitory effects of IL-6. Furthermore, IL-6 and LIF reversibly inhibited LTP in hippocampal slices, and in contrast to cerebellar neurons, BACE1 inhibitors verubecestat or AZD3839 did not abolish the inhibitory effect of IL-6 on LTP. Interestingly, a dramatic rebound effect on excitatory postsynaptic potentials was observed with BACE1 inhibitor AZD3839 but not verubecestat during wash out.</div><div>Our results support relevant and differential roles of IL-6, LIF and BACE1 in pathways modulating neuronal discharge activity in the cerebellum and the synaptic plasticity in the hippocampus, and a possible involvement of this interaction in deficits of memory and learning.</div></div>\",\"PeriodicalId\":297,\"journal\":{\"name\":\"Cytokine\",\"volume\":\"190 \",\"pages\":\"Article 156925\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cytokine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1043466625000729\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytokine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1043466625000729","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Shedding new light on BACE1-mediated modulation of IL-6 signaling: Implications for neural activity and synaptic plasticity in mice
The pleiotropic cytokine IL-6 regulates numerous processes in the body, including neuronal functions. IL-6 either binds to membrane-bound receptor (mIL-6R) and triggers signaling via heteromerization with the signal transducer gp130 (classical signaling), or binds to its soluble form (sIL-6R) to act on cells that do not express mIL-6R (trans-signaling). The ß-secretase BACE1 can cleave gp130 as well as IL-6R and we hypothesized that BACE1 may alter neuron activity and synaptic transmission via modulation of IL-6 signaling.
We used multielectrode array (MEA) recordings to monitor electrical activity of neuronal networks in acute cerebellar slices as well as long-term potentiation (LTP) induced by high-frequency stimulation in the hippocampus and to assess how exposure to IL-6 affects these processes. A pharmacological approach was applied to elucidate the contribution of trans-signaling involving BACE1.
Spontaneous neuronal activity in cerebellar slices significantly decreased upon perfusion with IL-6 but not LIF and recovered during wash out. BACE1 inhibitors verubecestat or AZD3839 abolished the inhibitory effects of IL-6. Furthermore, IL-6 and LIF reversibly inhibited LTP in hippocampal slices, and in contrast to cerebellar neurons, BACE1 inhibitors verubecestat or AZD3839 did not abolish the inhibitory effect of IL-6 on LTP. Interestingly, a dramatic rebound effect on excitatory postsynaptic potentials was observed with BACE1 inhibitor AZD3839 but not verubecestat during wash out.
Our results support relevant and differential roles of IL-6, LIF and BACE1 in pathways modulating neuronal discharge activity in the cerebellum and the synaptic plasticity in the hippocampus, and a possible involvement of this interaction in deficits of memory and learning.
期刊介绍:
The journal Cytokine has an open access mirror journal Cytokine: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
* Devoted exclusively to the study of the molecular biology, genetics, biochemistry, immunology, genome-wide association studies, pathobiology, diagnostic and clinical applications of all known interleukins, hematopoietic factors, growth factors, cytotoxins, interferons, new cytokines, and chemokines, Cytokine provides comprehensive coverage of cytokines and their mechanisms of actions, 12 times a year by publishing original high quality refereed scientific papers from prominent investigators in both the academic and industrial sectors.
We will publish 3 major types of manuscripts:
1) Original manuscripts describing research results.
2) Basic and clinical reviews describing cytokine actions and regulation.
3) Short commentaries/perspectives on recently published aspects of cytokines, pathogenesis and clinical results.