{"title":"一个遗传完全扭转对的模型结构","authors":"Jian Cui, Xue-Song Lu, Pu Zhang","doi":"10.1016/j.jpaa.2025.107958","DOIUrl":null,"url":null,"abstract":"<div><div>In contrast with the Hovey correspondence of abelian model structures from two complete cotorsion pairs, Beligiannis and Reiten give a construction of model structures on abelian categories from one hereditary complete cotorsion pair. The aim of this paper is to extend this result to weakly idempotent complete exact categories, by adding the condition of heredity of the complete cotorsion pair. In fact, even for abelian categories, this condition of heredity should be added. This construction really gives model structures which are not necessarily exact in the sense of Gillespie. The correspondence of Beligiannis and Reiten of weakly projective model structures also holds for weakly idempotent complete exact categories.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 7","pages":"Article 107958"},"PeriodicalIF":0.7000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model structure from one hereditary complete cotorsion pair\",\"authors\":\"Jian Cui, Xue-Song Lu, Pu Zhang\",\"doi\":\"10.1016/j.jpaa.2025.107958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In contrast with the Hovey correspondence of abelian model structures from two complete cotorsion pairs, Beligiannis and Reiten give a construction of model structures on abelian categories from one hereditary complete cotorsion pair. The aim of this paper is to extend this result to weakly idempotent complete exact categories, by adding the condition of heredity of the complete cotorsion pair. In fact, even for abelian categories, this condition of heredity should be added. This construction really gives model structures which are not necessarily exact in the sense of Gillespie. The correspondence of Beligiannis and Reiten of weakly projective model structures also holds for weakly idempotent complete exact categories.</div></div>\",\"PeriodicalId\":54770,\"journal\":{\"name\":\"Journal of Pure and Applied Algebra\",\"volume\":\"229 7\",\"pages\":\"Article 107958\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404925000970\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404925000970","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Model structure from one hereditary complete cotorsion pair
In contrast with the Hovey correspondence of abelian model structures from two complete cotorsion pairs, Beligiannis and Reiten give a construction of model structures on abelian categories from one hereditary complete cotorsion pair. The aim of this paper is to extend this result to weakly idempotent complete exact categories, by adding the condition of heredity of the complete cotorsion pair. In fact, even for abelian categories, this condition of heredity should be added. This construction really gives model structures which are not necessarily exact in the sense of Gillespie. The correspondence of Beligiannis and Reiten of weakly projective model structures also holds for weakly idempotent complete exact categories.
期刊介绍:
The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.