feral涂层上蠕变引起的不均匀氧化铝剥落

IF 7.1 1区 工程技术 Q1 ENGINEERING, MECHANICAL
Bo Yuan , Harry Hey , Christopher M. Harvey , Xiaofeng Guo , Simon Wang
{"title":"feral涂层上蠕变引起的不均匀氧化铝剥落","authors":"Bo Yuan ,&nbsp;Harry Hey ,&nbsp;Christopher M. Harvey ,&nbsp;Xiaofeng Guo ,&nbsp;Simon Wang","doi":"10.1016/j.ijmecsci.2025.110168","DOIUrl":null,"url":null,"abstract":"<div><div>Alumina scales play a pivotal role in the failure of thermal barrier coatings, and their cooling rate-dependent spallation remains a major limitation in high-temperature applications. This study presents an analytical model to quantify dynamic creep relaxation in alumina scales (<span><math><mrow><mi>α</mi><mo>−</mo><msub><mrow><mtext>Al</mtext></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mtext>O</mtext></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span>) and its role in blistering and eventual spallation. Particularly, cooling rate-dependent residual stress and stress relaxation kinetics are integrated to characterize the nonuniformity of creep relaxation, elucidating the mechanism of scale detachment at room temperature (Tolpygo and Clarke, 2000). The established model reveals that localized pockets of tensile stress at the scale-metal interface govern crack nucleation, while through-thickness bending from in-plane radial stress gradients leads to blister formation. Additionally, the model introduces spatial stress heterogeneity and energy threshold as the universal criteria for predicting spallation. The pocket of energy concentration model shows strong agreement with experimental observations. This study provides a comprehensive understanding of the interactions among mechanical stress, interface fracture toughness, and scale stability, enhancing predictive capabilities for failures in extreme thermal environments.</div></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"293 ","pages":"Article 110168"},"PeriodicalIF":7.1000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonuniform creep-induced alumina scale spallation on FeCrAl coatings\",\"authors\":\"Bo Yuan ,&nbsp;Harry Hey ,&nbsp;Christopher M. Harvey ,&nbsp;Xiaofeng Guo ,&nbsp;Simon Wang\",\"doi\":\"10.1016/j.ijmecsci.2025.110168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Alumina scales play a pivotal role in the failure of thermal barrier coatings, and their cooling rate-dependent spallation remains a major limitation in high-temperature applications. This study presents an analytical model to quantify dynamic creep relaxation in alumina scales (<span><math><mrow><mi>α</mi><mo>−</mo><msub><mrow><mtext>Al</mtext></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mtext>O</mtext></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span>) and its role in blistering and eventual spallation. Particularly, cooling rate-dependent residual stress and stress relaxation kinetics are integrated to characterize the nonuniformity of creep relaxation, elucidating the mechanism of scale detachment at room temperature (Tolpygo and Clarke, 2000). The established model reveals that localized pockets of tensile stress at the scale-metal interface govern crack nucleation, while through-thickness bending from in-plane radial stress gradients leads to blister formation. Additionally, the model introduces spatial stress heterogeneity and energy threshold as the universal criteria for predicting spallation. The pocket of energy concentration model shows strong agreement with experimental observations. This study provides a comprehensive understanding of the interactions among mechanical stress, interface fracture toughness, and scale stability, enhancing predictive capabilities for failures in extreme thermal environments.</div></div>\",\"PeriodicalId\":56287,\"journal\":{\"name\":\"International Journal of Mechanical Sciences\",\"volume\":\"293 \",\"pages\":\"Article 110168\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanical Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020740325002541\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020740325002541","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

氧化铝鳞片在热障涂层的失效中起着关键作用,它们的冷却速率依赖的剥落仍然是高温应用的主要限制。本研究提出了一个分析模型来量化氧化铝鳞片(α−Al2O3)的动态蠕变松弛及其在起泡和最终剥落中的作用。特别是,将依赖冷却速率的残余应力和应力松弛动力学结合起来,表征蠕变松弛的非均匀性,阐明了室温下尺度脱落的机制(Tolpygo和Clarke, 2000)。建立的模型表明,在尺度-金属界面处局部的拉应力袋控制着裂纹的形核,而平面内径向应力梯度的贯穿厚度弯曲导致水泡的形成。此外,该模型还引入了空间应力异质性和能量阈值作为预测裂裂的通用准则。能量袋集中模型与实验结果吻合较好。该研究提供了对机械应力、界面断裂韧性和尺度稳定性之间相互作用的全面理解,增强了对极端热环境下失效的预测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nonuniform creep-induced alumina scale spallation on FeCrAl coatings

Nonuniform creep-induced alumina scale spallation on FeCrAl coatings
Alumina scales play a pivotal role in the failure of thermal barrier coatings, and their cooling rate-dependent spallation remains a major limitation in high-temperature applications. This study presents an analytical model to quantify dynamic creep relaxation in alumina scales (αAl2O3) and its role in blistering and eventual spallation. Particularly, cooling rate-dependent residual stress and stress relaxation kinetics are integrated to characterize the nonuniformity of creep relaxation, elucidating the mechanism of scale detachment at room temperature (Tolpygo and Clarke, 2000). The established model reveals that localized pockets of tensile stress at the scale-metal interface govern crack nucleation, while through-thickness bending from in-plane radial stress gradients leads to blister formation. Additionally, the model introduces spatial stress heterogeneity and energy threshold as the universal criteria for predicting spallation. The pocket of energy concentration model shows strong agreement with experimental observations. This study provides a comprehensive understanding of the interactions among mechanical stress, interface fracture toughness, and scale stability, enhancing predictive capabilities for failures in extreme thermal environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Mechanical Sciences
International Journal of Mechanical Sciences 工程技术-工程:机械
CiteScore
12.80
自引率
17.80%
发文量
769
审稿时长
19 days
期刊介绍: The International Journal of Mechanical Sciences (IJMS) serves as a global platform for the publication and dissemination of original research that contributes to a deeper scientific understanding of the fundamental disciplines within mechanical, civil, and material engineering. The primary focus of IJMS is to showcase innovative and ground-breaking work that utilizes analytical and computational modeling techniques, such as Finite Element Method (FEM), Boundary Element Method (BEM), and mesh-free methods, among others. These modeling methods are applied to diverse fields including rigid-body mechanics (e.g., dynamics, vibration, stability), structural mechanics, metal forming, advanced materials (e.g., metals, composites, cellular, smart) behavior and applications, impact mechanics, strain localization, and other nonlinear effects (e.g., large deflections, plasticity, fracture). Additionally, IJMS covers the realms of fluid mechanics (both external and internal flows), tribology, thermodynamics, and materials processing. These subjects collectively form the core of the journal's content. In summary, IJMS provides a prestigious platform for researchers to present their original contributions, shedding light on analytical and computational modeling methods in various areas of mechanical engineering, as well as exploring the behavior and application of advanced materials, fluid mechanics, thermodynamics, and materials processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信