例外的2比1有理函数

IF 0.9 2区 数学 Q2 MATHEMATICS
Zhiguo Ding , Michael E. Zieve
{"title":"例外的2比1有理函数","authors":"Zhiguo Ding ,&nbsp;Michael E. Zieve","doi":"10.1016/j.jcta.2025.106046","DOIUrl":null,"url":null,"abstract":"<div><div>For each odd prime power <em>q</em>, we describe a class of rational functions <span><math><mi>f</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> with the following unusual property: for every odd <em>j</em>, the function induced by <span><math><mi>f</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span> on <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>j</mi></mrow></msup></mrow></msub><mo>∪</mo><mo>{</mo><mo>∞</mo><mo>}</mo></math></span> is 2-to-1. We also show that, among all known rational functions <span><math><mi>f</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> which are 2-to-1 on <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>j</mi></mrow></msup></mrow></msub><mo>∪</mo><mo>{</mo><mo>∞</mo><mo>}</mo></math></span> for infinitely many <em>j</em>, our new functions are the only ones which cannot be written as compositions of rational functions of degree at most four, monomials, Dickson polynomials, and additive (linearized) polynomials.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"215 ","pages":"Article 106046"},"PeriodicalIF":0.9000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exceptional 2-to-1 rational functions\",\"authors\":\"Zhiguo Ding ,&nbsp;Michael E. Zieve\",\"doi\":\"10.1016/j.jcta.2025.106046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For each odd prime power <em>q</em>, we describe a class of rational functions <span><math><mi>f</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> with the following unusual property: for every odd <em>j</em>, the function induced by <span><math><mi>f</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span> on <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>j</mi></mrow></msup></mrow></msub><mo>∪</mo><mo>{</mo><mo>∞</mo><mo>}</mo></math></span> is 2-to-1. We also show that, among all known rational functions <span><math><mi>f</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> which are 2-to-1 on <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mi>j</mi></mrow></msup></mrow></msub><mo>∪</mo><mo>{</mo><mo>∞</mo><mo>}</mo></math></span> for infinitely many <em>j</em>, our new functions are the only ones which cannot be written as compositions of rational functions of degree at most four, monomials, Dickson polynomials, and additive (linearized) polynomials.</div></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"215 \",\"pages\":\"Article 106046\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S009731652500041X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009731652500041X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于每一个奇数素数幂q,我们描述了一类有理函数f(X)∈Fq(X)具有如下的异常性质:对于每一个奇数j, f(X)在Fqj∪{∞}上引生的函数是2比1。我们还证明,在所有已知的对于无穷多个j在Fqj∪{∞}上为2比1的有理函数f(X)∈Fq(X)中,我们的新函数是唯一不能写成最多四次有理函数、单项式、Dickson多项式和加性(线性化)多项式的组合的函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exceptional 2-to-1 rational functions
For each odd prime power q, we describe a class of rational functions f(X)Fq(X) with the following unusual property: for every odd j, the function induced by f(X) on Fqj{} is 2-to-1. We also show that, among all known rational functions f(X)Fq(X) which are 2-to-1 on Fqj{} for infinitely many j, our new functions are the only ones which cannot be written as compositions of rational functions of degree at most four, monomials, Dickson polynomials, and additive (linearized) polynomials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信