{"title":"探索超图中的急剧传播连通性阈值","authors":"Guangyan Zhou , Bin Wang","doi":"10.1016/j.jmaa.2025.129509","DOIUrl":null,"url":null,"abstract":"<div><div>This paper studies the propagation connectivity, a generalized connectivity property of a generalized Erdős-Rényi model, denoted as <span><math><mi>G</mi><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo></math></span>, which comprises both 2-edges and 3-edges. We find that there exist sharp phase transitions from a region where with high probability <span><math><mi>G</mi><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo></math></span> is propagation connected to a region where with high probability <span><math><mi>G</mi><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo></math></span> is not propagation connected. Moreover, the critical values at which the phase transitions occur are located exactly.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 1","pages":"Article 129509"},"PeriodicalIF":1.2000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the sharp propagation connectivity threshold in hypergraphs\",\"authors\":\"Guangyan Zhou , Bin Wang\",\"doi\":\"10.1016/j.jmaa.2025.129509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper studies the propagation connectivity, a generalized connectivity property of a generalized Erdős-Rényi model, denoted as <span><math><mi>G</mi><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo></math></span>, which comprises both 2-edges and 3-edges. We find that there exist sharp phase transitions from a region where with high probability <span><math><mi>G</mi><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo></math></span> is propagation connected to a region where with high probability <span><math><mi>G</mi><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo></math></span> is not propagation connected. Moreover, the critical values at which the phase transitions occur are located exactly.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"550 1\",\"pages\":\"Article 129509\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25002902\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25002902","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Exploring the sharp propagation connectivity threshold in hypergraphs
This paper studies the propagation connectivity, a generalized connectivity property of a generalized Erdős-Rényi model, denoted as , which comprises both 2-edges and 3-edges. We find that there exist sharp phase transitions from a region where with high probability is propagation connected to a region where with high probability is not propagation connected. Moreover, the critical values at which the phase transitions occur are located exactly.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.