{"title":"非等距平移和调制不变希尔伯特空间","authors":"P.K. Ratnakumar , Joachim Toft , Jasson Vindas","doi":"10.1016/j.jmaa.2025.129530","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>H</mi></math></span> be a Hilbert space, continuously embedded in <span><math><msup><mrow><mi>S</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span>, and which contains at least one non-zero element in <span><math><msup><mrow><mi>S</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span>. If there is a constant <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>></mo><mn>0</mn></math></span> such that<span><span><span><math><msub><mrow><mo>‖</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>i</mi><mo>〈</mo><mspace></mspace><mo>⋅</mo><mspace></mspace><mo>,</mo><mi>ξ</mi><mo>〉</mo></mrow></msup><mi>f</mi><mo>(</mo><mspace></mspace><mo>⋅</mo><mspace></mspace><mo>−</mo><mi>x</mi><mo>)</mo><mo>‖</mo></mrow><mrow><mi>H</mi></mrow></msub><mo>≤</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msub><msub><mrow><mo>‖</mo><mi>f</mi><mo>‖</mo></mrow><mrow><mi>H</mi></mrow></msub><mo>,</mo><mspace></mspace><mi>f</mi><mo>∈</mo><mi>H</mi><mo>,</mo><mspace></mspace><mi>x</mi><mo>,</mo><mi>ξ</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>,</mo></math></span></span></span> then we prove that <span><math><mi>H</mi><mo>=</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span>, with equivalent norms.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 1","pages":"Article 129530"},"PeriodicalIF":1.2000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-isometric translation and modulation invariant Hilbert spaces\",\"authors\":\"P.K. Ratnakumar , Joachim Toft , Jasson Vindas\",\"doi\":\"10.1016/j.jmaa.2025.129530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>H</mi></math></span> be a Hilbert space, continuously embedded in <span><math><msup><mrow><mi>S</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span>, and which contains at least one non-zero element in <span><math><msup><mrow><mi>S</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span>. If there is a constant <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>></mo><mn>0</mn></math></span> such that<span><span><span><math><msub><mrow><mo>‖</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>i</mi><mo>〈</mo><mspace></mspace><mo>⋅</mo><mspace></mspace><mo>,</mo><mi>ξ</mi><mo>〉</mo></mrow></msup><mi>f</mi><mo>(</mo><mspace></mspace><mo>⋅</mo><mspace></mspace><mo>−</mo><mi>x</mi><mo>)</mo><mo>‖</mo></mrow><mrow><mi>H</mi></mrow></msub><mo>≤</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msub><msub><mrow><mo>‖</mo><mi>f</mi><mo>‖</mo></mrow><mrow><mi>H</mi></mrow></msub><mo>,</mo><mspace></mspace><mi>f</mi><mo>∈</mo><mi>H</mi><mo>,</mo><mspace></mspace><mi>x</mi><mo>,</mo><mi>ξ</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>,</mo></math></span></span></span> then we prove that <span><math><mi>H</mi><mo>=</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span>, with equivalent norms.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"550 1\",\"pages\":\"Article 129530\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25003117\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25003117","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Non-isometric translation and modulation invariant Hilbert spaces
Let be a Hilbert space, continuously embedded in , and which contains at least one non-zero element in . If there is a constant such that then we prove that , with equivalent norms.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.