一种基于聚类的联合深度学习方法,用于增强糖尿病管理与隐私保护边缘人工智能

Xinyi Yang, Juan Li
{"title":"一种基于聚类的联合深度学习方法,用于增强糖尿病管理与隐私保护边缘人工智能","authors":"Xinyi Yang,&nbsp;Juan Li","doi":"10.1016/j.health.2025.100392","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing prevalence of diabetes necessitates innovative glucose prediction methods that prioritize patient privacy. While edge artificial intelligence (AI) offers potential, its limitations in resource-constrained devices can be mitigated through federated learning (FL). However, challenges remain in accounting for patient variability and optimizing FL for glucose prediction. This research introduces a novel personalized clustering-based federated deep learning (Clu-FDL) model to address these challenges. We develop tailored models that enhance prediction accuracy by clustering patients based on carbohydrate (CHO) intake patterns. Utilizing Simple Recurrent Neural Network (SimpleRNN) and Gated Recurrent Unit (GRU) methods, the study evaluates the performance of local patients who contribute to training the cluster and global (non-cluster) models. The results show that the Clu-FDL approach achieves high precision (0.93), recall (0.96), and F1 scores (0.95), along with low Root Mean Square Error (RMSE) values (11.08 ± 1.77 mg/dL). Additionally, for new patients with different data durations, analysis based on 0.25–3 days of data indicates that Clu-FDL models exhibit greater stability, with smaller RMSE and higher precision, recall, and F1 scores compared to non-clustering models. The study identifies that SimpleRNN and GRU models are most effective for new patients with 9 and 6 days of data. This privacy-preserving, clustering-based personalized approach empowers patients to manage their diabetes effectively.</div></div>","PeriodicalId":73222,"journal":{"name":"Healthcare analytics (New York, N.Y.)","volume":"7 ","pages":"Article 100392"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A clustering-based federated deep learning approach for enhancing diabetes management with privacy-preserving edge artificial intelligence\",\"authors\":\"Xinyi Yang,&nbsp;Juan Li\",\"doi\":\"10.1016/j.health.2025.100392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The increasing prevalence of diabetes necessitates innovative glucose prediction methods that prioritize patient privacy. While edge artificial intelligence (AI) offers potential, its limitations in resource-constrained devices can be mitigated through federated learning (FL). However, challenges remain in accounting for patient variability and optimizing FL for glucose prediction. This research introduces a novel personalized clustering-based federated deep learning (Clu-FDL) model to address these challenges. We develop tailored models that enhance prediction accuracy by clustering patients based on carbohydrate (CHO) intake patterns. Utilizing Simple Recurrent Neural Network (SimpleRNN) and Gated Recurrent Unit (GRU) methods, the study evaluates the performance of local patients who contribute to training the cluster and global (non-cluster) models. The results show that the Clu-FDL approach achieves high precision (0.93), recall (0.96), and F1 scores (0.95), along with low Root Mean Square Error (RMSE) values (11.08 ± 1.77 mg/dL). Additionally, for new patients with different data durations, analysis based on 0.25–3 days of data indicates that Clu-FDL models exhibit greater stability, with smaller RMSE and higher precision, recall, and F1 scores compared to non-clustering models. The study identifies that SimpleRNN and GRU models are most effective for new patients with 9 and 6 days of data. This privacy-preserving, clustering-based personalized approach empowers patients to manage their diabetes effectively.</div></div>\",\"PeriodicalId\":73222,\"journal\":{\"name\":\"Healthcare analytics (New York, N.Y.)\",\"volume\":\"7 \",\"pages\":\"Article 100392\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Healthcare analytics (New York, N.Y.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772442525000115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare analytics (New York, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772442525000115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

糖尿病患病率的增加需要创新的血糖预测方法,优先考虑患者隐私。虽然边缘人工智能(AI)提供了潜力,但它在资源受限设备中的局限性可以通过联邦学习(FL)来缓解。然而,在考虑患者的可变性和优化血糖预测的FL方面仍然存在挑战。本研究引入了一种新的基于个性化聚类的联邦深度学习(clul - fdl)模型来解决这些挑战。我们开发了量身定制的模型,通过基于碳水化合物(CHO)摄入模式的患者聚类来提高预测准确性。利用简单递归神经网络(SimpleRNN)和门控递归单元(GRU)方法,该研究评估了有助于训练聚类和全局(非聚类)模型的局部患者的表现。结果表明,该方法具有较高的精密度(0.93)、召回率(0.96)和F1评分(0.95),均方根误差(RMSE)值(11.08±1.77 mg/dL)低。此外,对于不同数据持续时间的新患者,基于0.25-3天数据的分析表明,与非聚类模型相比,clul - fdl模型具有更大的稳定性,RMSE更小,精度、召回率和F1分数更高。该研究确定SimpleRNN和GRU模型对9天和6天的新患者最有效。这种保护隐私、基于聚类的个性化方法使患者能够有效地管理他们的糖尿病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A clustering-based federated deep learning approach for enhancing diabetes management with privacy-preserving edge artificial intelligence
The increasing prevalence of diabetes necessitates innovative glucose prediction methods that prioritize patient privacy. While edge artificial intelligence (AI) offers potential, its limitations in resource-constrained devices can be mitigated through federated learning (FL). However, challenges remain in accounting for patient variability and optimizing FL for glucose prediction. This research introduces a novel personalized clustering-based federated deep learning (Clu-FDL) model to address these challenges. We develop tailored models that enhance prediction accuracy by clustering patients based on carbohydrate (CHO) intake patterns. Utilizing Simple Recurrent Neural Network (SimpleRNN) and Gated Recurrent Unit (GRU) methods, the study evaluates the performance of local patients who contribute to training the cluster and global (non-cluster) models. The results show that the Clu-FDL approach achieves high precision (0.93), recall (0.96), and F1 scores (0.95), along with low Root Mean Square Error (RMSE) values (11.08 ± 1.77 mg/dL). Additionally, for new patients with different data durations, analysis based on 0.25–3 days of data indicates that Clu-FDL models exhibit greater stability, with smaller RMSE and higher precision, recall, and F1 scores compared to non-clustering models. The study identifies that SimpleRNN and GRU models are most effective for new patients with 9 and 6 days of data. This privacy-preserving, clustering-based personalized approach empowers patients to manage their diabetes effectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Healthcare analytics (New York, N.Y.)
Healthcare analytics (New York, N.Y.) Applied Mathematics, Modelling and Simulation, Nursing and Health Professions (General)
CiteScore
4.40
自引率
0.00%
发文量
0
审稿时长
79 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信