Muhammad Rabah, Labeeb Ali, Mohamed Shafi Kuttiyathil, Mohammednoor Altarawneh
{"title":"Thermochemical conversion of bioplastics: Evolved gas analysis and kinetics factors for polylactic acid (PLA) - waste biomass mixture","authors":"Muhammad Rabah, Labeeb Ali, Mohamed Shafi Kuttiyathil, Mohammednoor Altarawneh","doi":"10.1016/j.biombioe.2025.107848","DOIUrl":null,"url":null,"abstract":"<div><div>Polylactic acid (PLA) is the highest produced bioplastic globally but facing end-life disposal challenges. Pyrolysis proves to be a viable option, but the recovered product profile is not desirable in terms of quality and value. Date Pits (DP), a waste byproduct chemically rich with lignocellulosic fragments, can provide unique carbon-rich precursors which are highly desirable in the pyrolysis process. This study aims to investigate the synergistic effect of DP addition on PLA pyrolysis products. Thermogravimetric data demonstrates that PLA mixing with DP promotes char formation, initiates degradation at lower temperatures, and decreases the peak decomposition temperature (T<sub>p</sub>) from 362 °C to 343 °C. Primary pyrolysis occurs in the range of (200–400 °C) with 75.5 % weight loss and low heating rate shifts T<sub>p</sub> toward lower temperatures by averting the development of the thermal lag effect. Chemical structure analysis through FTIR shows that DP addition promotes controlled volatile release through PLA depolymerization hence yielding more uniformed and distinguished peaks for hydroxyl, phenols, and ester-containing groups. Moreover, it promoted free radical reactions that enhanced lactide recovery by restricting aldehyde formation. GCMS profiling indicates that pure PLA pyrolysis majorly yieldes lactide (3,6-Dimethyl-1,4-dioxane-2,5-dione). While the copyrolysis with date pits diversifies this product profile with the production of hydrocarbons (heptane and decane), aromatics (xylene, toluene and styrene), and furans which are highly valued in biorefineries, as drop-in fuels and in petrochemical industries. Kinetic analysis shows that the PLA/DP co-pyrolysis mixture reduces activation energies (E<sub>a</sub>) by 18 % and also reduces the thermodynamic parameters.</div></div>","PeriodicalId":253,"journal":{"name":"Biomass & Bioenergy","volume":"197 ","pages":"Article 107848"},"PeriodicalIF":5.8000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomass & Bioenergy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0961953425002594","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
Thermochemical conversion of bioplastics: Evolved gas analysis and kinetics factors for polylactic acid (PLA) - waste biomass mixture
Polylactic acid (PLA) is the highest produced bioplastic globally but facing end-life disposal challenges. Pyrolysis proves to be a viable option, but the recovered product profile is not desirable in terms of quality and value. Date Pits (DP), a waste byproduct chemically rich with lignocellulosic fragments, can provide unique carbon-rich precursors which are highly desirable in the pyrolysis process. This study aims to investigate the synergistic effect of DP addition on PLA pyrolysis products. Thermogravimetric data demonstrates that PLA mixing with DP promotes char formation, initiates degradation at lower temperatures, and decreases the peak decomposition temperature (Tp) from 362 °C to 343 °C. Primary pyrolysis occurs in the range of (200–400 °C) with 75.5 % weight loss and low heating rate shifts Tp toward lower temperatures by averting the development of the thermal lag effect. Chemical structure analysis through FTIR shows that DP addition promotes controlled volatile release through PLA depolymerization hence yielding more uniformed and distinguished peaks for hydroxyl, phenols, and ester-containing groups. Moreover, it promoted free radical reactions that enhanced lactide recovery by restricting aldehyde formation. GCMS profiling indicates that pure PLA pyrolysis majorly yieldes lactide (3,6-Dimethyl-1,4-dioxane-2,5-dione). While the copyrolysis with date pits diversifies this product profile with the production of hydrocarbons (heptane and decane), aromatics (xylene, toluene and styrene), and furans which are highly valued in biorefineries, as drop-in fuels and in petrochemical industries. Kinetic analysis shows that the PLA/DP co-pyrolysis mixture reduces activation energies (Ea) by 18 % and also reduces the thermodynamic parameters.
期刊介绍:
Biomass & Bioenergy is an international journal publishing original research papers and short communications, review articles and case studies on biological resources, chemical and biological processes, and biomass products for new renewable sources of energy and materials.
The scope of the journal extends to the environmental, management and economic aspects of biomass and bioenergy.
Key areas covered by the journal:
• Biomass: sources, energy crop production processes, genetic improvements, composition. Please note that research on these biomass subjects must be linked directly to bioenergy generation.
• Biological Residues: residues/rests from agricultural production, forestry and plantations (palm, sugar etc), processing industries, and municipal sources (MSW). Papers on the use of biomass residues through innovative processes/technological novelty and/or consideration of feedstock/system sustainability (or unsustainability) are welcomed. However waste treatment processes and pollution control or mitigation which are only tangentially related to bioenergy are not in the scope of the journal, as they are more suited to publications in the environmental arena. Papers that describe conventional waste streams (ie well described in existing literature) that do not empirically address ''new'' added value from the process are not suitable for submission to the journal.
• Bioenergy Processes: fermentations, thermochemical conversions, liquid and gaseous fuels, and petrochemical substitutes
• Bioenergy Utilization: direct combustion, gasification, electricity production, chemical processes, and by-product remediation
• Biomass and the Environment: carbon cycle, the net energy efficiency of bioenergy systems, assessment of sustainability, and biodiversity issues.