对称空间上密度估计的下界

IF 0.9 4区 数学 Q3 STATISTICS & PROBABILITY
Dena Marie Asta
{"title":"对称空间上密度估计的下界","authors":"Dena Marie Asta","doi":"10.1016/j.spl.2025.110416","DOIUrl":null,"url":null,"abstract":"<div><div>We prove that kernel density estimation on symmetric spaces of non-compact type, whose <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-risk was bounded above in previous work (Asta, 2021), in fact achieves a minimax rate of convergence. With this result, the story for kernel density estimation on all symmetric spaces is completed. The idea in adapting the proof for Euclidean space is to suitably abstract vector space operations on Euclidean space to both actions of symmetric groups and reparametrizations of Helgason–Fourier transforms and to use the fact that the exponential map for symmetric spaces of non-compact type defines a diffeomorphism.</div></div>","PeriodicalId":49475,"journal":{"name":"Statistics & Probability Letters","volume":"223 ","pages":"Article 110416"},"PeriodicalIF":0.9000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lower bounds for density estimation on symmetric spaces\",\"authors\":\"Dena Marie Asta\",\"doi\":\"10.1016/j.spl.2025.110416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We prove that kernel density estimation on symmetric spaces of non-compact type, whose <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-risk was bounded above in previous work (Asta, 2021), in fact achieves a minimax rate of convergence. With this result, the story for kernel density estimation on all symmetric spaces is completed. The idea in adapting the proof for Euclidean space is to suitably abstract vector space operations on Euclidean space to both actions of symmetric groups and reparametrizations of Helgason–Fourier transforms and to use the fact that the exponential map for symmetric spaces of non-compact type defines a diffeomorphism.</div></div>\",\"PeriodicalId\":49475,\"journal\":{\"name\":\"Statistics & Probability Letters\",\"volume\":\"223 \",\"pages\":\"Article 110416\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics & Probability Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167715225000616\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics & Probability Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167715225000616","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了在非紧型对称空间上的核密度估计,其l2 -风险在先前的工作(Asta, 2021)中有界,实际上实现了极小极大收敛速度。有了这个结果,就完成了所有对称空间上核密度估计的故事。对欧几里德空间的证明进行改编的思想是将欧几里德空间上的向量空间运算适当地抽象为对称群的作用和Helgason-Fourier变换的再参数化,并利用非紧型对称空间的指数映射定义了一个微分同构的事实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lower bounds for density estimation on symmetric spaces
We prove that kernel density estimation on symmetric spaces of non-compact type, whose L2-risk was bounded above in previous work (Asta, 2021), in fact achieves a minimax rate of convergence. With this result, the story for kernel density estimation on all symmetric spaces is completed. The idea in adapting the proof for Euclidean space is to suitably abstract vector space operations on Euclidean space to both actions of symmetric groups and reparametrizations of Helgason–Fourier transforms and to use the fact that the exponential map for symmetric spaces of non-compact type defines a diffeomorphism.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistics & Probability Letters
Statistics & Probability Letters 数学-统计学与概率论
CiteScore
1.60
自引率
0.00%
发文量
173
审稿时长
6 months
期刊介绍: Statistics & Probability Letters adopts a novel and highly innovative approach to the publication of research findings in statistics and probability. It features concise articles, rapid publication and broad coverage of the statistics and probability literature. Statistics & Probability Letters is a refereed journal. Articles will be limited to six journal pages (13 double-space typed pages) including references and figures. Apart from the six-page limitation, originality, quality and clarity will be the criteria for choosing the material to be published in Statistics & Probability Letters. Every attempt will be made to provide the first review of a submitted manuscript within three months of submission. The proliferation of literature and long publication delays have made it difficult for researchers and practitioners to keep up with new developments outside of, or even within, their specialization. The aim of Statistics & Probability Letters is to help to alleviate this problem. Concise communications (letters) allow readers to quickly and easily digest large amounts of material and to stay up-to-date with developments in all areas of statistics and probability. The mainstream of Letters will focus on new statistical methods, theoretical results, and innovative applications of statistics and probability to other scientific disciplines. Key results and central ideas must be presented in a clear and concise manner. These results may be part of a larger study that the author will submit at a later time as a full length paper to SPL or to another journal. Theory and methodology may be published with proofs omitted, or only sketched, but only if sufficient support material is provided so that the findings can be verified. Empirical and computational results that are of significant value will be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信