RAPTOR-AI:一个开源的人工智能驱动的放射性同位素辐射防护工具包

IF 1.6 3区 工程技术 Q3 CHEMISTRY, INORGANIC & NUCLEAR
Hiroshi Watabe , Peter K.N. Yu , Dragana Krstic , Dragoslav Nikezic , Kyeong Min Kim , Taiga Yamaya , Naoki Kawachi , Hiroki Tanaka , Zoran Jovanovic , A.K.F. Haque , M. Rafiqul Islam , Gary Tse , Quinncy Lee , Mehrdad Shahmohammadi Beni
{"title":"RAPTOR-AI:一个开源的人工智能驱动的放射性同位素辐射防护工具包","authors":"Hiroshi Watabe ,&nbsp;Peter K.N. Yu ,&nbsp;Dragana Krstic ,&nbsp;Dragoslav Nikezic ,&nbsp;Kyeong Min Kim ,&nbsp;Taiga Yamaya ,&nbsp;Naoki Kawachi ,&nbsp;Hiroki Tanaka ,&nbsp;Zoran Jovanovic ,&nbsp;A.K.F. Haque ,&nbsp;M. Rafiqul Islam ,&nbsp;Gary Tse ,&nbsp;Quinncy Lee ,&nbsp;Mehrdad Shahmohammadi Beni","doi":"10.1016/j.apradiso.2025.111797","DOIUrl":null,"url":null,"abstract":"<div><div>Artificial intelligence (AI) has gained significant attention in various scientific fields due to its ability to process large datasets. In nuclear radiation physics, while AI presents exciting opportunities, it cannot replace physics-based models essential for explaining radiation interactions with matter. To combine the strengths of both, we have developed and open-sourced the Radiation Protection Toolkit for Radioisotopes with Artificial Intelligence (RAPTOR-AI). This toolkit integrates AI with the Particle and Heavy Ion Transport code System (PHITS) Monte Carlo package, enabling rapid radiation protection analysis for radioisotopes and structural shielding. RAPTOR-AI is particularly valuable for emergency scenarios, allowing quick dose dispersion assessments when a facility’s structural map is available, enhancing safety and response efficiency.</div></div>","PeriodicalId":8096,"journal":{"name":"Applied Radiation and Isotopes","volume":"221 ","pages":"Article 111797"},"PeriodicalIF":1.6000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RAPTOR-AI: An open-source AI powered radiation protection toolkit for radioisotopes\",\"authors\":\"Hiroshi Watabe ,&nbsp;Peter K.N. Yu ,&nbsp;Dragana Krstic ,&nbsp;Dragoslav Nikezic ,&nbsp;Kyeong Min Kim ,&nbsp;Taiga Yamaya ,&nbsp;Naoki Kawachi ,&nbsp;Hiroki Tanaka ,&nbsp;Zoran Jovanovic ,&nbsp;A.K.F. Haque ,&nbsp;M. Rafiqul Islam ,&nbsp;Gary Tse ,&nbsp;Quinncy Lee ,&nbsp;Mehrdad Shahmohammadi Beni\",\"doi\":\"10.1016/j.apradiso.2025.111797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Artificial intelligence (AI) has gained significant attention in various scientific fields due to its ability to process large datasets. In nuclear radiation physics, while AI presents exciting opportunities, it cannot replace physics-based models essential for explaining radiation interactions with matter. To combine the strengths of both, we have developed and open-sourced the Radiation Protection Toolkit for Radioisotopes with Artificial Intelligence (RAPTOR-AI). This toolkit integrates AI with the Particle and Heavy Ion Transport code System (PHITS) Monte Carlo package, enabling rapid radiation protection analysis for radioisotopes and structural shielding. RAPTOR-AI is particularly valuable for emergency scenarios, allowing quick dose dispersion assessments when a facility’s structural map is available, enhancing safety and response efficiency.</div></div>\",\"PeriodicalId\":8096,\"journal\":{\"name\":\"Applied Radiation and Isotopes\",\"volume\":\"221 \",\"pages\":\"Article 111797\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Radiation and Isotopes\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0969804325001423\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Radiation and Isotopes","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0969804325001423","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

人工智能(AI)由于其处理大数据集的能力,在各个科学领域受到了极大的关注。在核辐射物理中,虽然人工智能提供了令人兴奋的机会,但它不能取代解释辐射与物质相互作用的基本物理模型。为了结合两者的优势,我们开发并开源了人工智能放射性同位素辐射防护工具包(RAPTOR-AI)。该工具包将人工智能与粒子和重离子传输代码系统(PHITS)蒙特卡罗包集成在一起,能够对放射性同位素和结构屏蔽进行快速辐射防护分析。RAPTOR-AI在紧急情况下特别有价值,当设施的结构图可用时,可以快速评估剂量分散,提高安全性和响应效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RAPTOR-AI: An open-source AI powered radiation protection toolkit for radioisotopes
Artificial intelligence (AI) has gained significant attention in various scientific fields due to its ability to process large datasets. In nuclear radiation physics, while AI presents exciting opportunities, it cannot replace physics-based models essential for explaining radiation interactions with matter. To combine the strengths of both, we have developed and open-sourced the Radiation Protection Toolkit for Radioisotopes with Artificial Intelligence (RAPTOR-AI). This toolkit integrates AI with the Particle and Heavy Ion Transport code System (PHITS) Monte Carlo package, enabling rapid radiation protection analysis for radioisotopes and structural shielding. RAPTOR-AI is particularly valuable for emergency scenarios, allowing quick dose dispersion assessments when a facility’s structural map is available, enhancing safety and response efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Radiation and Isotopes
Applied Radiation and Isotopes 工程技术-核科学技术
CiteScore
3.00
自引率
12.50%
发文量
406
审稿时长
13.5 months
期刊介绍: Applied Radiation and Isotopes provides a high quality medium for the publication of substantial, original and scientific and technological papers on the development and peaceful application of nuclear, radiation and radionuclide techniques in chemistry, physics, biochemistry, biology, medicine, security, engineering and in the earth, planetary and environmental sciences, all including dosimetry. Nuclear techniques are defined in the broadest sense and both experimental and theoretical papers are welcome. They include the development and use of α- and β-particles, X-rays and γ-rays, neutrons and other nuclear particles and radiations from all sources, including radionuclides, synchrotron sources, cyclotrons and reactors and from the natural environment. The journal aims to publish papers with significance to an international audience, containing substantial novelty and scientific impact. The Editors reserve the rights to reject, with or without external review, papers that do not meet these criteria. Papers dealing with radiation processing, i.e., where radiation is used to bring about a biological, chemical or physical change in a material, should be directed to our sister journal Radiation Physics and Chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信