{"title":"边界处跳跃核爆炸的狄利克雷形式的势理论","authors":"Panki Kim , Renming Song , Zoran Vondraček","doi":"10.1016/j.jfa.2025.110934","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we study the potential theory of Dirichlet forms on the half-space <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow><mrow><mi>d</mi></mrow></msubsup></math></span> defined by the jump kernel <span><math><mi>J</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>=</mo><mo>|</mo><mi>x</mi><mo>−</mo><mi>y</mi><msup><mrow><mo>|</mo></mrow><mrow><mo>−</mo><mi>d</mi><mo>−</mo><mi>α</mi></mrow></msup><mi>B</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span> and the killing potential <span><math><mi>κ</mi><msubsup><mrow><mi>x</mi></mrow><mrow><mi>d</mi></mrow><mrow><mo>−</mo><mi>α</mi></mrow></msubsup></math></span>, where <span><math><mi>α</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span> and <span><math><mi>B</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span> can blow up to infinity at the boundary. The jump kernel and the killing potential depend on several parameters. For all admissible values of the parameters involved and all <span><math><mi>d</mi><mo>≥</mo><mn>1</mn></math></span>, we prove that the boundary Harnack principle holds, and establish sharp two-sided estimates on the Green functions of these processes.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 4","pages":"Article 110934"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Potential theory of Dirichlet forms with jump kernels blowing up at the boundary\",\"authors\":\"Panki Kim , Renming Song , Zoran Vondraček\",\"doi\":\"10.1016/j.jfa.2025.110934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper we study the potential theory of Dirichlet forms on the half-space <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow><mrow><mi>d</mi></mrow></msubsup></math></span> defined by the jump kernel <span><math><mi>J</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>=</mo><mo>|</mo><mi>x</mi><mo>−</mo><mi>y</mi><msup><mrow><mo>|</mo></mrow><mrow><mo>−</mo><mi>d</mi><mo>−</mo><mi>α</mi></mrow></msup><mi>B</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span> and the killing potential <span><math><mi>κ</mi><msubsup><mrow><mi>x</mi></mrow><mrow><mi>d</mi></mrow><mrow><mo>−</mo><mi>α</mi></mrow></msubsup></math></span>, where <span><math><mi>α</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span> and <span><math><mi>B</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span> can blow up to infinity at the boundary. The jump kernel and the killing potential depend on several parameters. For all admissible values of the parameters involved and all <span><math><mi>d</mi><mo>≥</mo><mn>1</mn></math></span>, we prove that the boundary Harnack principle holds, and establish sharp two-sided estimates on the Green functions of these processes.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"289 4\",\"pages\":\"Article 110934\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123625001168\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625001168","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Potential theory of Dirichlet forms with jump kernels blowing up at the boundary
In this paper we study the potential theory of Dirichlet forms on the half-space defined by the jump kernel and the killing potential , where and can blow up to infinity at the boundary. The jump kernel and the killing potential depend on several parameters. For all admissible values of the parameters involved and all , we prove that the boundary Harnack principle holds, and establish sharp two-sided estimates on the Green functions of these processes.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis