边界处跳跃核爆炸的狄利克雷形式的势理论

IF 1.7 2区 数学 Q1 MATHEMATICS
Panki Kim , Renming Song , Zoran Vondraček
{"title":"边界处跳跃核爆炸的狄利克雷形式的势理论","authors":"Panki Kim ,&nbsp;Renming Song ,&nbsp;Zoran Vondraček","doi":"10.1016/j.jfa.2025.110934","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we study the potential theory of Dirichlet forms on the half-space <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow><mrow><mi>d</mi></mrow></msubsup></math></span> defined by the jump kernel <span><math><mi>J</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>=</mo><mo>|</mo><mi>x</mi><mo>−</mo><mi>y</mi><msup><mrow><mo>|</mo></mrow><mrow><mo>−</mo><mi>d</mi><mo>−</mo><mi>α</mi></mrow></msup><mi>B</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span> and the killing potential <span><math><mi>κ</mi><msubsup><mrow><mi>x</mi></mrow><mrow><mi>d</mi></mrow><mrow><mo>−</mo><mi>α</mi></mrow></msubsup></math></span>, where <span><math><mi>α</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span> and <span><math><mi>B</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span> can blow up to infinity at the boundary. The jump kernel and the killing potential depend on several parameters. For all admissible values of the parameters involved and all <span><math><mi>d</mi><mo>≥</mo><mn>1</mn></math></span>, we prove that the boundary Harnack principle holds, and establish sharp two-sided estimates on the Green functions of these processes.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 4","pages":"Article 110934"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Potential theory of Dirichlet forms with jump kernels blowing up at the boundary\",\"authors\":\"Panki Kim ,&nbsp;Renming Song ,&nbsp;Zoran Vondraček\",\"doi\":\"10.1016/j.jfa.2025.110934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper we study the potential theory of Dirichlet forms on the half-space <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow><mrow><mi>d</mi></mrow></msubsup></math></span> defined by the jump kernel <span><math><mi>J</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>=</mo><mo>|</mo><mi>x</mi><mo>−</mo><mi>y</mi><msup><mrow><mo>|</mo></mrow><mrow><mo>−</mo><mi>d</mi><mo>−</mo><mi>α</mi></mrow></msup><mi>B</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span> and the killing potential <span><math><mi>κ</mi><msubsup><mrow><mi>x</mi></mrow><mrow><mi>d</mi></mrow><mrow><mo>−</mo><mi>α</mi></mrow></msubsup></math></span>, where <span><math><mi>α</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span> and <span><math><mi>B</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span> can blow up to infinity at the boundary. The jump kernel and the killing potential depend on several parameters. For all admissible values of the parameters involved and all <span><math><mi>d</mi><mo>≥</mo><mn>1</mn></math></span>, we prove that the boundary Harnack principle holds, and establish sharp two-sided estimates on the Green functions of these processes.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"289 4\",\"pages\":\"Article 110934\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123625001168\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625001168","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了由跳核J(x,y)=|x−y|−d−αB(x,y)和杀伤势κxd−α所定义的半空间R+d上Dirichlet形式的势理论,其中α∈(0,2)和B(x,y)在边界处可以膨胀到无穷大。跳转内核和终止潜能取决于几个参数。对于所涉及的参数的所有允许值和所有d≥1,我们证明了边界Harnack原理成立,并对这些过程的Green函数建立了尖锐的双边估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Potential theory of Dirichlet forms with jump kernels blowing up at the boundary
In this paper we study the potential theory of Dirichlet forms on the half-space R+d defined by the jump kernel J(x,y)=|xy|dαB(x,y) and the killing potential κxdα, where α(0,2) and B(x,y) can blow up to infinity at the boundary. The jump kernel and the killing potential depend on several parameters. For all admissible values of the parameters involved and all d1, we prove that the boundary Harnack principle holds, and establish sharp two-sided estimates on the Green functions of these processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信