{"title":"水冰和月球高地模拟混合物的可见至近红外光谱的实验室实验:颗粒大小、颗粒形状、相位角和冰丰度的影响","authors":"N. de Castro, S. Li","doi":"10.1016/j.icarus.2025.116578","DOIUrl":null,"url":null,"abstract":"<div><div>Surficial water ice has been detected in the permanently shaded regions (PSRs) near the lunar poles. Water ice can be detected by its diagnostic absorption features of ice at 1.0, 1.25, 1.5, and 2.0 μm, as well as high reflectance in the VIS region. However, the effects of particle size and shape, ice abundance, and phase angle on the VNIR spectra of ice mixtures remain poorly understood, posing a challenge for detections of water ice on the lunar surface. In this study, we measured the VNIR spectra of pure water ice and mixtures of water ice and a lunar highland regolith simulant (HRS). We investigated the effects of particle size of ice (0–250 μm), particle shape of ice (angular vs. spherical), phase angle (0–105°), and ice abundance (0–50 wt%) on the VNIR spectra of water ice and HRS mixtures from 350 to 2500 nm. Our results show that coarser ice particles exhibit stronger NIR absorptions and lower VIS reflectance, attributable to increased photon absorptions due to longer optical pathlengths. Similarly, the longer optical pathlengths of spherical particles relative to angular ones result in lower VIS reflectance. The forward scattering nature of water ice leads to increased VIS reflectance at high phase angles (>90°), suggesting that high phase angles are optimal for lunar water ice detection. Phase angles have a negligible effect on the strength of the NIR absorptions of ice, especially when ice is present at low ice abundances (<20 wt%) in intimate mixtures with the HRS. Lastly, our findings suggest that the NIR absorptions near 1.25, 1.5, and 2.0 μm rapidly deepen at very low ice concentrations (0–5 wt%). We also find a linear relationship between VIS reflectance and ice content in intimate mixtures with a HRS containing 0–50 wt% ice. The findings of this study offer a detailed framework for detecting and analyzing water ice on the lunar surface via VNIR spectroscopy.</div></div>","PeriodicalId":13199,"journal":{"name":"Icarus","volume":"435 ","pages":"Article 116578"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laboratory experiments on the visible to near- infrared (VNIR) spectroscopy of water ice and lunar highland simulant mixtures: Effects of particle size, particle shape, phase angle, and ice abundance\",\"authors\":\"N. de Castro, S. Li\",\"doi\":\"10.1016/j.icarus.2025.116578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Surficial water ice has been detected in the permanently shaded regions (PSRs) near the lunar poles. Water ice can be detected by its diagnostic absorption features of ice at 1.0, 1.25, 1.5, and 2.0 μm, as well as high reflectance in the VIS region. However, the effects of particle size and shape, ice abundance, and phase angle on the VNIR spectra of ice mixtures remain poorly understood, posing a challenge for detections of water ice on the lunar surface. In this study, we measured the VNIR spectra of pure water ice and mixtures of water ice and a lunar highland regolith simulant (HRS). We investigated the effects of particle size of ice (0–250 μm), particle shape of ice (angular vs. spherical), phase angle (0–105°), and ice abundance (0–50 wt%) on the VNIR spectra of water ice and HRS mixtures from 350 to 2500 nm. Our results show that coarser ice particles exhibit stronger NIR absorptions and lower VIS reflectance, attributable to increased photon absorptions due to longer optical pathlengths. Similarly, the longer optical pathlengths of spherical particles relative to angular ones result in lower VIS reflectance. The forward scattering nature of water ice leads to increased VIS reflectance at high phase angles (>90°), suggesting that high phase angles are optimal for lunar water ice detection. Phase angles have a negligible effect on the strength of the NIR absorptions of ice, especially when ice is present at low ice abundances (<20 wt%) in intimate mixtures with the HRS. Lastly, our findings suggest that the NIR absorptions near 1.25, 1.5, and 2.0 μm rapidly deepen at very low ice concentrations (0–5 wt%). We also find a linear relationship between VIS reflectance and ice content in intimate mixtures with a HRS containing 0–50 wt% ice. The findings of this study offer a detailed framework for detecting and analyzing water ice on the lunar surface via VNIR spectroscopy.</div></div>\",\"PeriodicalId\":13199,\"journal\":{\"name\":\"Icarus\",\"volume\":\"435 \",\"pages\":\"Article 116578\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Icarus\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019103525001253\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Icarus","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019103525001253","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Laboratory experiments on the visible to near- infrared (VNIR) spectroscopy of water ice and lunar highland simulant mixtures: Effects of particle size, particle shape, phase angle, and ice abundance
Surficial water ice has been detected in the permanently shaded regions (PSRs) near the lunar poles. Water ice can be detected by its diagnostic absorption features of ice at 1.0, 1.25, 1.5, and 2.0 μm, as well as high reflectance in the VIS region. However, the effects of particle size and shape, ice abundance, and phase angle on the VNIR spectra of ice mixtures remain poorly understood, posing a challenge for detections of water ice on the lunar surface. In this study, we measured the VNIR spectra of pure water ice and mixtures of water ice and a lunar highland regolith simulant (HRS). We investigated the effects of particle size of ice (0–250 μm), particle shape of ice (angular vs. spherical), phase angle (0–105°), and ice abundance (0–50 wt%) on the VNIR spectra of water ice and HRS mixtures from 350 to 2500 nm. Our results show that coarser ice particles exhibit stronger NIR absorptions and lower VIS reflectance, attributable to increased photon absorptions due to longer optical pathlengths. Similarly, the longer optical pathlengths of spherical particles relative to angular ones result in lower VIS reflectance. The forward scattering nature of water ice leads to increased VIS reflectance at high phase angles (>90°), suggesting that high phase angles are optimal for lunar water ice detection. Phase angles have a negligible effect on the strength of the NIR absorptions of ice, especially when ice is present at low ice abundances (<20 wt%) in intimate mixtures with the HRS. Lastly, our findings suggest that the NIR absorptions near 1.25, 1.5, and 2.0 μm rapidly deepen at very low ice concentrations (0–5 wt%). We also find a linear relationship between VIS reflectance and ice content in intimate mixtures with a HRS containing 0–50 wt% ice. The findings of this study offer a detailed framework for detecting and analyzing water ice on the lunar surface via VNIR spectroscopy.
期刊介绍:
Icarus is devoted to the publication of original contributions in the field of Solar System studies. Manuscripts reporting the results of new research - observational, experimental, or theoretical - concerning the astronomy, geology, meteorology, physics, chemistry, biology, and other scientific aspects of our Solar System or extrasolar systems are welcome. The journal generally does not publish papers devoted exclusively to the Sun, the Earth, celestial mechanics, meteoritics, or astrophysics. Icarus does not publish papers that provide "improved" versions of Bode''s law, or other numerical relations, without a sound physical basis. Icarus does not publish meeting announcements or general notices. Reviews, historical papers, and manuscripts describing spacecraft instrumentation may be considered, but only with prior approval of the editor. An entire issue of the journal is occasionally devoted to a single subject, usually arising from a conference on the same topic. The language of publication is English. American or British usage is accepted, but not a mixture of these.