划分为不同部分的奇偶校验差和偏差的分布

IF 1 3区 数学 Q1 MATHEMATICS
Siu Hang Man
{"title":"划分为不同部分的奇偶校验差和偏差的分布","authors":"Siu Hang Man","doi":"10.1016/j.ejc.2025.104157","DOIUrl":null,"url":null,"abstract":"<div><div>For a partition <span><math><mrow><mi>λ</mi><mo>⊢</mo><mi>n</mi></mrow></math></span>, we let <span><math><mrow><mo>pd</mo><mrow><mo>(</mo><mi>λ</mi><mo>)</mo></mrow></mrow></math></span>, the parity difference of <span><math><mi>λ</mi></math></span>, be the number of odd parts of <span><math><mi>λ</mi></math></span> minus the number of even parts of <span><math><mi>λ</mi></math></span>. We prove for <span><math><mrow><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mi>R</mi></mrow></math></span> an asymptotic expansion for the number of partitions of <span><math><mi>n</mi></math></span> into distinct parts with normalised parity difference <span><math><mrow><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>4</mn></mrow></msup><mo>pd</mo><mrow><mo>(</mo><mi>λ</mi><mo>)</mo></mrow></mrow></math></span> greater than <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> as <span><math><mrow><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></math></span>. As a corollary, we find the distribution of the parity differences and parity biases for partitions of <span><math><mi>n</mi></math></span> into distinct parts. We also establish analogous results for generalised parity differences modulo <span><math><mi>N</mi></math></span>.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"127 ","pages":"Article 104157"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributions of parity differences and biases in partitions into distinct parts\",\"authors\":\"Siu Hang Man\",\"doi\":\"10.1016/j.ejc.2025.104157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For a partition <span><math><mrow><mi>λ</mi><mo>⊢</mo><mi>n</mi></mrow></math></span>, we let <span><math><mrow><mo>pd</mo><mrow><mo>(</mo><mi>λ</mi><mo>)</mo></mrow></mrow></math></span>, the parity difference of <span><math><mi>λ</mi></math></span>, be the number of odd parts of <span><math><mi>λ</mi></math></span> minus the number of even parts of <span><math><mi>λ</mi></math></span>. We prove for <span><math><mrow><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mi>R</mi></mrow></math></span> an asymptotic expansion for the number of partitions of <span><math><mi>n</mi></math></span> into distinct parts with normalised parity difference <span><math><mrow><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>4</mn></mrow></msup><mo>pd</mo><mrow><mo>(</mo><mi>λ</mi><mo>)</mo></mrow></mrow></math></span> greater than <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> as <span><math><mrow><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></math></span>. As a corollary, we find the distribution of the parity differences and parity biases for partitions of <span><math><mi>n</mi></math></span> into distinct parts. We also establish analogous results for generalised parity differences modulo <span><math><mi>N</mi></math></span>.</div></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":\"127 \",\"pages\":\"Article 104157\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669825000393\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825000393","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于一个划分λ≠n,我们设λ的奇偶差pd(λ)等于λ的奇部数减去λ的偶部数。我们证明了当n→∞时,对于c0∈R,当n→∞时,n被划分为不同部分且归一化宇称差n−1/4pd(λ)大于c0的渐近展开式。作为推论,我们发现了n分成不同部分的宇称差和宇称偏置的分布。我们也建立了模N的广义宇称差的类似结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributions of parity differences and biases in partitions into distinct parts
For a partition λn, we let pd(λ), the parity difference of λ, be the number of odd parts of λ minus the number of even parts of λ. We prove for c0R an asymptotic expansion for the number of partitions of n into distinct parts with normalised parity difference n1/4pd(λ) greater than c0 as n. As a corollary, we find the distribution of the parity differences and parity biases for partitions of n into distinct parts. We also establish analogous results for generalised parity differences modulo N.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信