{"title":"划分为不同部分的奇偶校验差和偏差的分布","authors":"Siu Hang Man","doi":"10.1016/j.ejc.2025.104157","DOIUrl":null,"url":null,"abstract":"<div><div>For a partition <span><math><mrow><mi>λ</mi><mo>⊢</mo><mi>n</mi></mrow></math></span>, we let <span><math><mrow><mo>pd</mo><mrow><mo>(</mo><mi>λ</mi><mo>)</mo></mrow></mrow></math></span>, the parity difference of <span><math><mi>λ</mi></math></span>, be the number of odd parts of <span><math><mi>λ</mi></math></span> minus the number of even parts of <span><math><mi>λ</mi></math></span>. We prove for <span><math><mrow><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mi>R</mi></mrow></math></span> an asymptotic expansion for the number of partitions of <span><math><mi>n</mi></math></span> into distinct parts with normalised parity difference <span><math><mrow><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>4</mn></mrow></msup><mo>pd</mo><mrow><mo>(</mo><mi>λ</mi><mo>)</mo></mrow></mrow></math></span> greater than <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> as <span><math><mrow><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></math></span>. As a corollary, we find the distribution of the parity differences and parity biases for partitions of <span><math><mi>n</mi></math></span> into distinct parts. We also establish analogous results for generalised parity differences modulo <span><math><mi>N</mi></math></span>.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"127 ","pages":"Article 104157"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributions of parity differences and biases in partitions into distinct parts\",\"authors\":\"Siu Hang Man\",\"doi\":\"10.1016/j.ejc.2025.104157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For a partition <span><math><mrow><mi>λ</mi><mo>⊢</mo><mi>n</mi></mrow></math></span>, we let <span><math><mrow><mo>pd</mo><mrow><mo>(</mo><mi>λ</mi><mo>)</mo></mrow></mrow></math></span>, the parity difference of <span><math><mi>λ</mi></math></span>, be the number of odd parts of <span><math><mi>λ</mi></math></span> minus the number of even parts of <span><math><mi>λ</mi></math></span>. We prove for <span><math><mrow><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mi>R</mi></mrow></math></span> an asymptotic expansion for the number of partitions of <span><math><mi>n</mi></math></span> into distinct parts with normalised parity difference <span><math><mrow><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>4</mn></mrow></msup><mo>pd</mo><mrow><mo>(</mo><mi>λ</mi><mo>)</mo></mrow></mrow></math></span> greater than <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> as <span><math><mrow><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></math></span>. As a corollary, we find the distribution of the parity differences and parity biases for partitions of <span><math><mi>n</mi></math></span> into distinct parts. We also establish analogous results for generalised parity differences modulo <span><math><mi>N</mi></math></span>.</div></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":\"127 \",\"pages\":\"Article 104157\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669825000393\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825000393","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Distributions of parity differences and biases in partitions into distinct parts
For a partition , we let , the parity difference of , be the number of odd parts of minus the number of even parts of . We prove for an asymptotic expansion for the number of partitions of into distinct parts with normalised parity difference greater than as . As a corollary, we find the distribution of the parity differences and parity biases for partitions of into distinct parts. We also establish analogous results for generalised parity differences modulo .
期刊介绍:
The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.