Rhearne Ryan , Mathew N. Leslie , Patrick He , Paul M. Young , Camilla M. Hoyos , Hui Xin Ong , Daniela Traini
{"title":"针对神经退行性疾病中昼夜节律障碍的鼻内和吸入给药系统,观点和未来展望","authors":"Rhearne Ryan , Mathew N. Leslie , Patrick He , Paul M. Young , Camilla M. Hoyos , Hui Xin Ong , Daniela Traini","doi":"10.1016/j.addr.2025.115575","DOIUrl":null,"url":null,"abstract":"<div><div>Synchronisation of the suprachiasmatic nucleus (SCN) driven endogenous clock, located within the central nervous system (CNS), and exogenous time cues, is essential for maintaining circadian rhythmicity, homeostasis and overall wellbeing. Disordered circadian rhythms have been associated with various conditions, inclusive of neurodegenerative disorders, such as Alzheimer’s disease and Parkinson’s disease. Traditional pharmacological approaches to circadian dysfunction in neurodegenerative disorders have primarily focused on oral drug delivery. Oral medications often face challenges in achieving the necessary systemic circulation to effectively bypass the blood brain barrier (BBB) and reach the CNS, primarily due to low or variable bioavailability. Advancements in non-invasive delivery methods, such as orally inhaled and intranasal formulations, present promising alternatives for targeting the CNS. Orally inhaled and intranasal drug delivery allows for medications to rapidly achieve high systemic circulation through increased bioavailability and fast onset of action. Additionally, intranasal delivery allows for therapies to bypass the BBB through the olfactory or trigeminal nerve pathways to directly enter the CNS. This review assesses the potential for orally inhaled and intranasal therapies to treat circadian disorders in neurodegenerative conditions. In addition, this review will explore melatonin as an example of enhancing therapeutic outcomes by adopting inhaled or intranasal drug delivery formulations to improve drug absorption and target circadian disorder more effectively.</div></div>","PeriodicalId":7254,"journal":{"name":"Advanced drug delivery reviews","volume":"220 ","pages":"Article 115575"},"PeriodicalIF":15.2000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intranasal and inhaled delivery systems for targeting circadian dysfunction in neurodegenerative disorders, perspective and future outlook\",\"authors\":\"Rhearne Ryan , Mathew N. Leslie , Patrick He , Paul M. Young , Camilla M. Hoyos , Hui Xin Ong , Daniela Traini\",\"doi\":\"10.1016/j.addr.2025.115575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Synchronisation of the suprachiasmatic nucleus (SCN) driven endogenous clock, located within the central nervous system (CNS), and exogenous time cues, is essential for maintaining circadian rhythmicity, homeostasis and overall wellbeing. Disordered circadian rhythms have been associated with various conditions, inclusive of neurodegenerative disorders, such as Alzheimer’s disease and Parkinson’s disease. Traditional pharmacological approaches to circadian dysfunction in neurodegenerative disorders have primarily focused on oral drug delivery. Oral medications often face challenges in achieving the necessary systemic circulation to effectively bypass the blood brain barrier (BBB) and reach the CNS, primarily due to low or variable bioavailability. Advancements in non-invasive delivery methods, such as orally inhaled and intranasal formulations, present promising alternatives for targeting the CNS. Orally inhaled and intranasal drug delivery allows for medications to rapidly achieve high systemic circulation through increased bioavailability and fast onset of action. Additionally, intranasal delivery allows for therapies to bypass the BBB through the olfactory or trigeminal nerve pathways to directly enter the CNS. This review assesses the potential for orally inhaled and intranasal therapies to treat circadian disorders in neurodegenerative conditions. In addition, this review will explore melatonin as an example of enhancing therapeutic outcomes by adopting inhaled or intranasal drug delivery formulations to improve drug absorption and target circadian disorder more effectively.</div></div>\",\"PeriodicalId\":7254,\"journal\":{\"name\":\"Advanced drug delivery reviews\",\"volume\":\"220 \",\"pages\":\"Article 115575\"},\"PeriodicalIF\":15.2000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced drug delivery reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169409X25000602\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced drug delivery reviews","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169409X25000602","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Intranasal and inhaled delivery systems for targeting circadian dysfunction in neurodegenerative disorders, perspective and future outlook
Synchronisation of the suprachiasmatic nucleus (SCN) driven endogenous clock, located within the central nervous system (CNS), and exogenous time cues, is essential for maintaining circadian rhythmicity, homeostasis and overall wellbeing. Disordered circadian rhythms have been associated with various conditions, inclusive of neurodegenerative disorders, such as Alzheimer’s disease and Parkinson’s disease. Traditional pharmacological approaches to circadian dysfunction in neurodegenerative disorders have primarily focused on oral drug delivery. Oral medications often face challenges in achieving the necessary systemic circulation to effectively bypass the blood brain barrier (BBB) and reach the CNS, primarily due to low or variable bioavailability. Advancements in non-invasive delivery methods, such as orally inhaled and intranasal formulations, present promising alternatives for targeting the CNS. Orally inhaled and intranasal drug delivery allows for medications to rapidly achieve high systemic circulation through increased bioavailability and fast onset of action. Additionally, intranasal delivery allows for therapies to bypass the BBB through the olfactory or trigeminal nerve pathways to directly enter the CNS. This review assesses the potential for orally inhaled and intranasal therapies to treat circadian disorders in neurodegenerative conditions. In addition, this review will explore melatonin as an example of enhancing therapeutic outcomes by adopting inhaled or intranasal drug delivery formulations to improve drug absorption and target circadian disorder more effectively.
期刊介绍:
The aim of the Journal is to provide a forum for the critical analysis of advanced drug and gene delivery systems and their applications in human and veterinary medicine. The Journal has a broad scope, covering the key issues for effective drug and gene delivery, from administration to site-specific delivery.
In general, the Journal publishes review articles in a Theme Issue format. Each Theme Issue provides a comprehensive and critical examination of current and emerging research on the design and development of advanced drug and gene delivery systems and their application to experimental and clinical therapeutics. The goal is to illustrate the pivotal role of a multidisciplinary approach to modern drug delivery, encompassing the application of sound biological and physicochemical principles to the engineering of drug delivery systems to meet the therapeutic need at hand. Importantly the Editorial Team of ADDR asks that the authors effectively window the extensive volume of literature, pick the important contributions and explain their importance, produce a forward looking identification of the challenges facing the field and produce a Conclusions section with expert recommendations to address the issues.