Jinyong Ma, Kenneth B. Crozier, Andrey A. Sukhorukov
{"title":"集成涡的生成和与超表面的频率转换","authors":"Jinyong Ma, Kenneth B. Crozier, Andrey A. Sukhorukov","doi":"10.1038/s41377-025-01831-z","DOIUrl":null,"url":null,"abstract":"<p>The generation of optical vortices in compact systems and across different spectral regions can open new horizons for their applications in end-user devices. Latest advances in the design and fabrication of optical metasurfaces made of a quadratically nonlinear material enable highly precise creation of vortices with different topological charges at the second-harmonic frequency, with the potential to obtain various other structured states of light.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"1 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated generation of vortices and frequency conversion with metasurfaces\",\"authors\":\"Jinyong Ma, Kenneth B. Crozier, Andrey A. Sukhorukov\",\"doi\":\"10.1038/s41377-025-01831-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The generation of optical vortices in compact systems and across different spectral regions can open new horizons for their applications in end-user devices. Latest advances in the design and fabrication of optical metasurfaces made of a quadratically nonlinear material enable highly precise creation of vortices with different topological charges at the second-harmonic frequency, with the potential to obtain various other structured states of light.</p>\",\"PeriodicalId\":18069,\"journal\":{\"name\":\"Light-Science & Applications\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":20.6000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Light-Science & Applications\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1038/s41377-025-01831-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-025-01831-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Integrated generation of vortices and frequency conversion with metasurfaces
The generation of optical vortices in compact systems and across different spectral regions can open new horizons for their applications in end-user devices. Latest advances in the design and fabrication of optical metasurfaces made of a quadratically nonlinear material enable highly precise creation of vortices with different topological charges at the second-harmonic frequency, with the potential to obtain various other structured states of light.