采用低功函数栅极材料钆的增强型 C-H 钻石场效应晶体管

IF 3.5 2区 物理与天体物理 Q2 PHYSICS, APPLIED
Minghui Zhang, Fang Lin, Wei Wang, Mingchen Zhang, Qi Qi, Genqiang Chen, Feng Wen, Yanfeng Wang, Pengfei Zhang, Yuesong Liang, Shuwei Fan, Cui Yu, Tai Min, Hongxing Wang
{"title":"采用低功函数栅极材料钆的增强型 C-H 钻石场效应晶体管","authors":"Minghui Zhang, Fang Lin, Wei Wang, Mingchen Zhang, Qi Qi, Genqiang Chen, Feng Wen, Yanfeng Wang, Pengfei Zhang, Yuesong Liang, Shuwei Fan, Cui Yu, Tai Min, Hongxing Wang","doi":"10.1063/5.0250891","DOIUrl":null,"url":null,"abstract":"Enhancement-mode hydrogen-terminated diamond (C-H diamond) field effect transistors (FETs) are strongly desirable for safety protection, energy saving, etc., and low work function gate material is an effective and convenient way to deplete the two-dimensional hole gas and realize the enhancement-mode. In this article, we demonstrate a C-H diamond FET with low work function gadolinia (Gd2O3) gate materials. For the 4 μm gate length (LG) Gd2O3 C-H diamond FET, the device demonstrates an obvious enhancement-mode with a threshold voltage of −1.3 V. Besides, the maximum source/drain current density and the leakage current density are −80.0 mA/mm and 1.6 × 10−6 A/cm2 at a gate voltage of −7 V, respectively. Moreover, the device demonstrates a saturation carrier mobility of 437.3 cm2/V · s. Accordingly, this enhancement-mode C-H diamond Gd2O3 FET demonstrates high performance with relatively high source/drain current density and low leakage current density, which will provide a strategy for the development of enhancement-mode C-H diamond FETs significantly.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"59 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An enhancement-mode C-H diamond FET with low work function gate material gadolinia\",\"authors\":\"Minghui Zhang, Fang Lin, Wei Wang, Mingchen Zhang, Qi Qi, Genqiang Chen, Feng Wen, Yanfeng Wang, Pengfei Zhang, Yuesong Liang, Shuwei Fan, Cui Yu, Tai Min, Hongxing Wang\",\"doi\":\"10.1063/5.0250891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Enhancement-mode hydrogen-terminated diamond (C-H diamond) field effect transistors (FETs) are strongly desirable for safety protection, energy saving, etc., and low work function gate material is an effective and convenient way to deplete the two-dimensional hole gas and realize the enhancement-mode. In this article, we demonstrate a C-H diamond FET with low work function gadolinia (Gd2O3) gate materials. For the 4 μm gate length (LG) Gd2O3 C-H diamond FET, the device demonstrates an obvious enhancement-mode with a threshold voltage of −1.3 V. Besides, the maximum source/drain current density and the leakage current density are −80.0 mA/mm and 1.6 × 10−6 A/cm2 at a gate voltage of −7 V, respectively. Moreover, the device demonstrates a saturation carrier mobility of 437.3 cm2/V · s. Accordingly, this enhancement-mode C-H diamond Gd2O3 FET demonstrates high performance with relatively high source/drain current density and low leakage current density, which will provide a strategy for the development of enhancement-mode C-H diamond FETs significantly.\",\"PeriodicalId\":8094,\"journal\":{\"name\":\"Applied Physics Letters\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0250891\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0250891","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

增强型氢端金刚石(C-H diamond)场效应晶体管(FET)在安全保护、节能等方面具有强烈的应用前景,而低功函数栅极材料是耗尽二维空穴气体、实现增强型场效应晶体管的一种有效而便捷的方法。本文展示了一种采用低功函数钆(Gd2O3)栅极材料的 C-H 金刚石场效应晶体管。对于栅长为 4 μm (LG) 的 Gd2O3 C-H 金刚石场效应晶体管,该器件具有明显的增强模式,阈值电压为-1.3 V。此外,在栅极电压为-7 V 时,最大源/漏电流密度和漏电流密度分别为-80.0 mA/mm 和 1.6 × 10-6 A/cm2。该器件的饱和载流子迁移率为 437.3 cm2/V - s。因此,这种增强型 C-H 金刚石 Gd2O3 FET 具有较高的源极/漏极电流密度和较低的漏极电流密度,表现出很高的性能,这将为增强型 C-H 金刚石 FET 的开发提供重要的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An enhancement-mode C-H diamond FET with low work function gate material gadolinia
Enhancement-mode hydrogen-terminated diamond (C-H diamond) field effect transistors (FETs) are strongly desirable for safety protection, energy saving, etc., and low work function gate material is an effective and convenient way to deplete the two-dimensional hole gas and realize the enhancement-mode. In this article, we demonstrate a C-H diamond FET with low work function gadolinia (Gd2O3) gate materials. For the 4 μm gate length (LG) Gd2O3 C-H diamond FET, the device demonstrates an obvious enhancement-mode with a threshold voltage of −1.3 V. Besides, the maximum source/drain current density and the leakage current density are −80.0 mA/mm and 1.6 × 10−6 A/cm2 at a gate voltage of −7 V, respectively. Moreover, the device demonstrates a saturation carrier mobility of 437.3 cm2/V · s. Accordingly, this enhancement-mode C-H diamond Gd2O3 FET demonstrates high performance with relatively high source/drain current density and low leakage current density, which will provide a strategy for the development of enhancement-mode C-H diamond FETs significantly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Physics Letters
Applied Physics Letters 物理-物理:应用
CiteScore
6.40
自引率
10.00%
发文量
1821
审稿时长
1.6 months
期刊介绍: Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology. In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics. APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field. Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信