{"title":"Mean-field theory for self-interacting relativistic Luttinger fermions","authors":"Holger Gies, Marta Picciau","doi":"10.1103/physrevd.111.085001","DOIUrl":null,"url":null,"abstract":"We investigate a class of quantum field theories with relativistic Luttinger fermions and local self-interaction in scalar channels. For an understanding of possible low-energy phases, we first classify the set of mass terms arising from scalar fermion bilinears. For large flavor numbers, we show that each of our models features a coupling branch in which the theory is asymptotically free. In order to address the long-range behavior, we use mean-field theory which is exact in the limit of large flavor numbers. We identify two models which undergo dimensional transmutation, interconnecting the asymptotically free high-energy regime with an ordered low-energy phase sustaining a vacuum condensate. We also study the analytic structure of the Luttinger-fermionic propagator in the various possible gapped phases. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"62 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.085001","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Mean-field theory for self-interacting relativistic Luttinger fermions
We investigate a class of quantum field theories with relativistic Luttinger fermions and local self-interaction in scalar channels. For an understanding of possible low-energy phases, we first classify the set of mass terms arising from scalar fermion bilinears. For large flavor numbers, we show that each of our models features a coupling branch in which the theory is asymptotically free. In order to address the long-range behavior, we use mean-field theory which is exact in the limit of large flavor numbers. We identify two models which undergo dimensional transmutation, interconnecting the asymptotically free high-energy regime with an ordered low-energy phase sustaining a vacuum condensate. We also study the analytic structure of the Luttinger-fermionic propagator in the various possible gapped phases. Published by the American Physical Society2025
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.