重力入口和再加热过程中的冻结

IF 5 2区 物理与天体物理 Q1 Physics and Astronomy
Stephen E. Henrich, Yann Mambrini, Keith A. Olive
{"title":"重力入口和再加热过程中的冻结","authors":"Stephen E. Henrich, Yann Mambrini, Keith A. Olive","doi":"10.1103/physrevd.111.083501","DOIUrl":null,"url":null,"abstract":"We conduct a systematic investigation of freeze-in during reheating while taking care to include both direct and indirect production of dark matter (DM) via gravitational portals and inflaton decay. Direct production of DM can occur via gravitational scattering of the inflaton, while indirect production occurs through scattering in the Standard Model radiation bath. We consider two main contributions to the radiation bath during reheating. The first, which may dominate at the onset of the reheating process, is produced via gravitational scattering of the inflaton. The second (and more standard contribution) comes from inflaton decay. We consider a broad class of DM production rates parametrized as R</a:mi>χ</a:mi></a:msub>∝</a:mo>T</a:mi>n</a:mi>+</a:mo>6</a:mn></a:mrow></a:msup>/</a:mo>Λ</a:mi>n</a:mi>+</a:mo>2</a:mn></a:mrow></a:msup></a:math>, and inflaton potentials with a power-law form <d:math xmlns:d=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><d:mi>V</d:mi><d:mo stretchy=\"false\">(</d:mo><d:mi>ϕ</d:mi><d:mo stretchy=\"false\">)</d:mo><d:mo>∝</d:mo><d:msup><d:mi>ϕ</d:mi><d:mi>k</d:mi></d:msup></d:math> about the minimum. We find the relic density produced by freeze-in for each contribution to the Standard Model bath for arbitrary <h:math xmlns:h=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><h:mi>k</h:mi></h:math> and <j:math xmlns:j=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><j:mi>n</j:mi></j:math>, and compare these with the DM density produced gravitationally by inflaton scattering. We find that freeze-in production from the gravitationally produced radiation bath can exceed that of the conventional decay bath and account for the observed relic density provided that <l:math xmlns:l=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><l:msub><l:mi>m</l:mi><l:mi>χ</l:mi></l:msub><l:mo>&gt;</l:mo><l:msub><l:mi>T</l:mi><l:mrow><l:mi>RH</l:mi></l:mrow></l:msub></l:math>, with additional <n:math xmlns:n=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><n:mi>k</n:mi></n:math>- and <p:math xmlns:p=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><p:mi>n</p:mi></p:math>-dependent constraints. For each freeze-in interaction considered, we also find <r:math xmlns:r=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><r:msub><r:mi>m</r:mi><r:mi>χ</r:mi></r:msub></r:math>- and <t:math xmlns:t=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><t:msub><t:mi>T</t:mi><t:mrow><t:mi>RH</t:mi></t:mrow></t:msub></t:math>-dependent limits on the beyond the Standard Model scale, <v:math xmlns:v=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><v:mi mathvariant=\"normal\">Λ</v:mi></v:math>, for which gravitational production will exceed ordinary freeze-in production. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"235 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aspects of gravitational portals and freeze-in during reheating\",\"authors\":\"Stephen E. Henrich, Yann Mambrini, Keith A. Olive\",\"doi\":\"10.1103/physrevd.111.083501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We conduct a systematic investigation of freeze-in during reheating while taking care to include both direct and indirect production of dark matter (DM) via gravitational portals and inflaton decay. Direct production of DM can occur via gravitational scattering of the inflaton, while indirect production occurs through scattering in the Standard Model radiation bath. We consider two main contributions to the radiation bath during reheating. The first, which may dominate at the onset of the reheating process, is produced via gravitational scattering of the inflaton. The second (and more standard contribution) comes from inflaton decay. We consider a broad class of DM production rates parametrized as R</a:mi>χ</a:mi></a:msub>∝</a:mo>T</a:mi>n</a:mi>+</a:mo>6</a:mn></a:mrow></a:msup>/</a:mo>Λ</a:mi>n</a:mi>+</a:mo>2</a:mn></a:mrow></a:msup></a:math>, and inflaton potentials with a power-law form <d:math xmlns:d=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><d:mi>V</d:mi><d:mo stretchy=\\\"false\\\">(</d:mo><d:mi>ϕ</d:mi><d:mo stretchy=\\\"false\\\">)</d:mo><d:mo>∝</d:mo><d:msup><d:mi>ϕ</d:mi><d:mi>k</d:mi></d:msup></d:math> about the minimum. We find the relic density produced by freeze-in for each contribution to the Standard Model bath for arbitrary <h:math xmlns:h=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><h:mi>k</h:mi></h:math> and <j:math xmlns:j=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><j:mi>n</j:mi></j:math>, and compare these with the DM density produced gravitationally by inflaton scattering. We find that freeze-in production from the gravitationally produced radiation bath can exceed that of the conventional decay bath and account for the observed relic density provided that <l:math xmlns:l=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><l:msub><l:mi>m</l:mi><l:mi>χ</l:mi></l:msub><l:mo>&gt;</l:mo><l:msub><l:mi>T</l:mi><l:mrow><l:mi>RH</l:mi></l:mrow></l:msub></l:math>, with additional <n:math xmlns:n=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><n:mi>k</n:mi></n:math>- and <p:math xmlns:p=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><p:mi>n</p:mi></p:math>-dependent constraints. For each freeze-in interaction considered, we also find <r:math xmlns:r=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><r:msub><r:mi>m</r:mi><r:mi>χ</r:mi></r:msub></r:math>- and <t:math xmlns:t=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><t:msub><t:mi>T</t:mi><t:mrow><t:mi>RH</t:mi></t:mrow></t:msub></t:math>-dependent limits on the beyond the Standard Model scale, <v:math xmlns:v=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><v:mi mathvariant=\\\"normal\\\">Λ</v:mi></v:math>, for which gravitational production will exceed ordinary freeze-in production. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"235 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.111.083501\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.083501","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

我们对再加热过程中的冻结进行了系统的研究,同时注意包括通过引力门户和膨胀衰变直接和间接产生的暗物质。DM的直接产生可以通过暴胀的引力散射发生,而间接产生则通过标准模型辐射浴中的散射发生。我们考虑了再加热过程中对辐射浴的两个主要贡献。第一种可能在再加热过程开始时占主导地位,是由暴胀的引力散射产生的。第二个(也是更标准的贡献)来自通货膨胀衰减。我们考虑一类广义的DM生产速率参数化为Rχ∝Tn+6/Λn+2,以及关于最小值的幂律形式V(ϕ)∝ϕk的膨胀势。对于任意k和n,我们发现冻结对标准模型的每一种贡献所产生的遗迹密度,并将其与由暴胀散射引力产生的DM密度进行比较。我们发现,引力产生的辐射浴的冻结产物可以超过传统衰变浴的冻结产物,并且可以解释观测到的遗迹密度,只要mχ>;TRH具有额外的k和n依赖约束。对于所考虑的每个冻结相互作用,我们还发现了超出标准模型尺度(Λ)的mχ和trh依赖极限,其中引力产生将超过普通的冻结产生。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Aspects of gravitational portals and freeze-in during reheating
We conduct a systematic investigation of freeze-in during reheating while taking care to include both direct and indirect production of dark matter (DM) via gravitational portals and inflaton decay. Direct production of DM can occur via gravitational scattering of the inflaton, while indirect production occurs through scattering in the Standard Model radiation bath. We consider two main contributions to the radiation bath during reheating. The first, which may dominate at the onset of the reheating process, is produced via gravitational scattering of the inflaton. The second (and more standard contribution) comes from inflaton decay. We consider a broad class of DM production rates parametrized as Rχ∝Tn+6/Λn+2, and inflaton potentials with a power-law form V(ϕ)ϕk about the minimum. We find the relic density produced by freeze-in for each contribution to the Standard Model bath for arbitrary k and n, and compare these with the DM density produced gravitationally by inflaton scattering. We find that freeze-in production from the gravitationally produced radiation bath can exceed that of the conventional decay bath and account for the observed relic density provided that mχ>TRH, with additional k- and n-dependent constraints. For each freeze-in interaction considered, we also find mχ- and TRH-dependent limits on the beyond the Standard Model scale, Λ, for which gravitational production will exceed ordinary freeze-in production. Published by the American Physical Society 2025
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信