记忆相关神经元的重新激活会诱导竞争神经元群受到下游抑制

IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Jacob F. Norman, Bahar Rahsepar, Anna Vena, Martin Thunemann, Anna Devor, Steve Ramirez, John A. White
{"title":"记忆相关神经元的重新激活会诱导竞争神经元群受到下游抑制","authors":"Jacob F. Norman, Bahar Rahsepar, Anna Vena, Martin Thunemann, Anna Devor, Steve Ramirez, John A. White","doi":"10.1073/pnas.2410101122","DOIUrl":null,"url":null,"abstract":"Inducing apparent memory recall by tagging and optogenetically reactivating cells in the hippocampus was demonstrated over a decade ago. However, the hippocampal dynamics resulting from this reactivation remain largely unknown. While calcium imaging is commonly used as a measure of neuronal activity, GCaMP, the most common calcium indicator, cannot be used with optogenetic neuronal reactivation because both require blue light excitation. To resolve this overlap, we demonstrate optogenetic reactivation with a red-shifted opsin, ChrimsonR. We then conduct dual-color calcium imaging in CA1 during memory reactivation in DG. In addition to measuring population dynamics in CA1, CA1 cells tagged during the original experience were identified. In the fear-conditioned animals (FC+), nontagged cells in CA1 decreased their firing rate during stimulation, while tagged cells maintained their activity level. In the FC+ animals, as the behavioral effect of stimulation decreased across days, so did the changes in neural activity during stimulation. Our results both demonstrate the technical feasibility of calcium imaging during optogenetic reactivation of memory-associated neurons and advance our understanding of the dynamics underlying this reactivation.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"37 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reactivation of memory-associated neurons induces downstream suppression of competing neuronal populations\",\"authors\":\"Jacob F. Norman, Bahar Rahsepar, Anna Vena, Martin Thunemann, Anna Devor, Steve Ramirez, John A. White\",\"doi\":\"10.1073/pnas.2410101122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inducing apparent memory recall by tagging and optogenetically reactivating cells in the hippocampus was demonstrated over a decade ago. However, the hippocampal dynamics resulting from this reactivation remain largely unknown. While calcium imaging is commonly used as a measure of neuronal activity, GCaMP, the most common calcium indicator, cannot be used with optogenetic neuronal reactivation because both require blue light excitation. To resolve this overlap, we demonstrate optogenetic reactivation with a red-shifted opsin, ChrimsonR. We then conduct dual-color calcium imaging in CA1 during memory reactivation in DG. In addition to measuring population dynamics in CA1, CA1 cells tagged during the original experience were identified. In the fear-conditioned animals (FC+), nontagged cells in CA1 decreased their firing rate during stimulation, while tagged cells maintained their activity level. In the FC+ animals, as the behavioral effect of stimulation decreased across days, so did the changes in neural activity during stimulation. Our results both demonstrate the technical feasibility of calcium imaging during optogenetic reactivation of memory-associated neurons and advance our understanding of the dynamics underlying this reactivation.\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2410101122\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2410101122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reactivation of memory-associated neurons induces downstream suppression of competing neuronal populations
Inducing apparent memory recall by tagging and optogenetically reactivating cells in the hippocampus was demonstrated over a decade ago. However, the hippocampal dynamics resulting from this reactivation remain largely unknown. While calcium imaging is commonly used as a measure of neuronal activity, GCaMP, the most common calcium indicator, cannot be used with optogenetic neuronal reactivation because both require blue light excitation. To resolve this overlap, we demonstrate optogenetic reactivation with a red-shifted opsin, ChrimsonR. We then conduct dual-color calcium imaging in CA1 during memory reactivation in DG. In addition to measuring population dynamics in CA1, CA1 cells tagged during the original experience were identified. In the fear-conditioned animals (FC+), nontagged cells in CA1 decreased their firing rate during stimulation, while tagged cells maintained their activity level. In the FC+ animals, as the behavioral effect of stimulation decreased across days, so did the changes in neural activity during stimulation. Our results both demonstrate the technical feasibility of calcium imaging during optogenetic reactivation of memory-associated neurons and advance our understanding of the dynamics underlying this reactivation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信